COVARIANT SUPERGRAPHS I11

S. M. Kuzenko, School of Physics, UWA

N = 2 Supersymmetric QED
The classical action of N =2 SQED in the A-frame:
1 _ 1
SsQED = = / d*z o + — / Az wew,
e e
+/d82 <@er +56_VCN2> + (i / P20Q0Q + c.c.) :

where W, = —:D?D, V. The matter chiral superfields @ and Q

have charges +e and —e, respectively.

[t is useful to introduce new chiral variables

Q = exp (i%al) <g> :

with & = (07, 09, 03) the Pauli matrices. Then, the action takes

the (real representation) form
1 - 1
SSQED =— / d®z OQ + - / d% Wew,
e e
1
+ / d8> QfeV2Q + 3 ( / d%z ) Q'Q + C.C.)

And one more cosmetic step: let us switch over to the 7-frame.



In the 7-frame, the action becomes
1 - 1
SSQED =— / d®z OO + - / d%z Wew,
e e
1
+ / P2 Q'Q + §</d6ngQTQ + C.C.)

Here Q is covariantly chiral, D;Q = 0. The chiral field strength,

W, that appears in the algebra of gauge-covariant derivatives, is

Wa:WaUQ .

Since the gauge group is U(1), the background-quantum splitting
is trivial:

p—=o+p, VoV4+v, Q—=Q+q,
where ¢, V" and Q are background superfields, while ¢, v and q are
quantum ones. The quantum superfields q and q' are background
covariantly chiral and antichiral, respectively. Upon quantization

in Feynman gauge, we end up with the following action to be used

for loop calculations (we set Q = 0 in what follows)
1 g [ 1
Squantum: ?/d z (C,OQO — §”U|:|?))
1
+ / d*z q'e’ 72q + 7 ( / %2 (¢ +¢)q'q+ C.C.) ,
with [ = 00,. The ghost superfields completely decouple!
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The one-loop effective action is determined by the quantum quadratic

1 1
5(2):—2/d8z (@g@——UDfU)
e 2

|
+/d8quq+5(/d6ngqTq+c.c.) |

Since the superfields ¢ and v are free, the one-loop effective action

action

is generated by the hypermultiplet matter:

eironefloop — / [Dq DqT] eiShyper ,

1
Shyper:/dquTq+5(/d6z¢qTq+C.C.)

According to the principles of QFT, I'one—100p 15 expressed via a

functional determinant of the operator

528 528
H — <5Q(z)5Q(z') 5(1(z)(5Q(z')> _ (H++(z7 Z) Hi(z, Zl)) .

628 528
SaE0a) Faa) Hoi(z,2) H-—(2,7)

The two-point functions Hi(z, 2') are covariantly chiral (+) or

covariantly antichiral (—), with respect to the corresponding super-
space argument. The functional derivatives for covariantly chiral

(antichiral) superfields are as follows:

5 1 I 7 _
5qil(z/) q (Z) = _ZLDQ (5 il 58(2 — Z,) = 5+(Z7 Z/) ’
5 —1 - 1 2 <1 8 A /
5(_12,,(Z,)q(z)— 473 80 (z—2)=6_(z2).



The effective action is

1—‘one—loop — i Tr 1HH(¢) )

2
where
91 —1D?
H(aﬁ)—<_lp2 51 ,
4
and

<H++(z,z’) H+(z,z’)> ( 61 —}p?) <5+(z.z’) 0 )
H_(2,2") H__(2,7%) —iD? 91 0 J.(z2)

In fact, the latter operator depends parametrically on both the
background vector and chiral multiplets. We have explicitly indi-
cated the dependence on ¢, that is H(¢), since it will be impor-
tant soon. The functional trace of operators on spaces of chiral-

antichiral superfileds, such as H(¢), is defines as follows
Tr'H :tr/d6zH++(z,z) + tr/d6ZH__(z,z) :

with ‘tr’ the matrix trace.



Consider

where we have used the fact that

H2(0) = (DO* D”) |

Here [J ([J_) is covariantly chiral (antichiral) d’Alembertian (see

Covariant supergraphs I).

Now, one observes
1 —-D?¢
HH0) H(g) = ( e ) =1+ A(9),
-2D'¢ 1
where

(0 A 0 ~5D%¢
10- (05 ) (e )

The effective action becomes
= %Tr InH(0) + %Tr In (1 +A(¢)) .

Consider

2 (14 A@) = - 31 4r(e)

n

|
— Z S AQm(¢) + off-diagonal terms
2m

- 1
Z — (=B(¢))™ + off-diagonal terms ,
m
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where

B(6) = A%¢) = (A*OA* B OA ) |

Our consideration leads to

Tr In (1 + A(¢)> - %Tr In (1 ~ B(qs)) .

The effective action becomes

1

Cone-toop = 5 T N H(0) + iTr In (1 - B(qs))

B O, 0 i
iTrln<0 D) +1Tr1n(1—8(¢))

_ iTr I O, -, A, A 0 |
4 0 I I Y
Inserting the explicit form for A, _ and A_, gives
i O, — +D? p=-D? 0
l—wone—loop = i Tr In T ¢D_ ¢ ) | 9T .
4 0 O_ —D? ¢D—+D2¢

To this point, the background vector and chiral multiplets have

been completely arbitrary.



Effective Kahler potential

Let us analyse a sector of the effective action which involves the chi-
ral multiplet only, I'[¢), ¢]. It is derived from the above expression
by switching the vector multiplet off,
i 0O — L1D%¢plD? 0
F[@baqﬁ]:i’I‘I‘ln( " onle e
0 O — D oD%
1
16

Here we have done, in particular, the matrix trace.

.
—iTr, In (D— DngiDZgb)EiTu nF,, .

This can be simplified using some formal manipulations. For the

chiral delta-function we get

1 _
6. (z,2) = _ZDQ Sz —2)

1 D?D? 1=

_ . _D2> 8 o
16 0 < D)oz =2
1 D/2Dl2 1_

— . _D2) 58 )
16 OV ( 1 (2= 2)

(-1 () () e

Using this result, we can continue

Tr F, = /d6z F.i(z,2)= /dGz/d6z’ 0(z,2") Fii(z,2)
1D/2
= /dSz/dgz' F..(z, z’)( — Eﬁ) Sz — 2)

-Jr f g1 - )1 -
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1D2D2
8 8/ 8 / 8 /
/d /d F++ T )5(z—z)}5(z—z)

:/d8z/d82'58 z—2 [F++ P(+)] (2,2) ,

where | e
Fo=11

is the chiral projector. The result of our manipulations:

TI'+F_|__|_ = TI'(F_+_+ P(+)) .

Modulo field-independent terms, the effective action becomes

Dlp, 6] = iTr (m {1 _ %DQ nglQDng} )



To compute the effective Kahler potential,

[ ¢2x0.6),
in the previous expression we can simply set
¢ = const .

Then, the Kahler potential is given by
_ hy 1
K(¢,é) =1 ln {1 _ %} Zotw—a) .
This quantum correction can be evaluated using the standard tech-
niques of QFT. The result is
B 1 B
K - _ ] 2)
(6:6) = ~ gt 66/
Buchbinder, SMK, Yarevskaya (1994
de Wit, Grisaru, Rocek (1996
(
(

Pickering, West (1996
Grisaru, Rocek, von Unge (1996

)
)
)
)

The Kahler potential can be rewritten in the equivalent form:

K(6.0)= 0F(0)+ 0 F(@) . Flo) =~ 0 ho/n)

with F(¢) the holomorphic Seiberg pre-potential.



Supersymmetric Euler-Heisenberg action

Let us consider the case of a constant ¢,

Dd¢:Da¢:O'
Then
i O, — ol 0 i .
['one—1oon = — IT In _ = -"Ir ln(D — 1)
loop A ( 0 |:|—¢¢1> 9 + + gbgb
1
:—éTrJr InG, ,

where the Green’s function G (z, 2’) is covariantly chiral in both

arguments, and obey the equation
(D+ — €5¢) Gi(z,2) = —=d,(2,7) .
Let the background U (1) vector multiplet be on-shell:
DWW, =0.

Then the chiral propagator G is expressed via the Green’s func-

tion G introduced in the first lecture:

1 _
Gi(z,7)= —ZDQG(z, 2 = —iD'QG(z, 2,

where G satisfies the equation
(O = 09) G(2,2") = =18°(z — &) .

We can now compute G(z, ') in the case of a special vector mul-

tiplet.
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Covariantly constant Yang-Mills supermultiplet

We will need the properties of the parallel displacement propagator

in the case of a covariantly constant background vector multiplet,

This is a supersymmetric extension of a covariantly constant Yang-
Mills field,
VaoFp. =0

The identities (%) and (x%) (see Covariant supergraphs II) are
equivalent to the following:
1 ao . 7y .~
Dysl(2,7) =1(2,7) ( — 7 Foapi(Z) —1CWs(2) +1(W5(2)
2% o6
+ 3 GO DWS() + 5056 deﬁ-@'))

- (_ ipm wai(2) = 1GWi(2) +1(;Ws(2)

- P ocae oo
— 2 G DaWs(2) — 5 GsC deﬁ(z)) I(2,7) .
Comment : The non-supersymmetric analogue of this result is

V(2 2) = % I(2,2) (z — o) Fap(a') = % (z — ') Fop(a) Iz, 2)
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12
1. 1.
in W - L)
J% C@C_BV_VB(Z’)
1

123 Wil) + 50 D) — 16D Wal2) })

| i . o
= (500" Faapsl®) = 5055 W) + 20DV ()|
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Exact heat kernel

In lecture 2, we introduced the heat kernel
K(z, 2 |s) =" 6%z — )1,
O, =D"D, — W'D, + W;D* .
Now, it follows from the algebra of gauge-covariant derivatives that
DW;=0 = [D,, WDs—W;D’]=0.

This identity allows a convenient factorization of the kernel in the
form
K(z,7|s)=U(s) eis P*Pa Sz — 21, U(s) = o 1s(W*Da= WD)

K(z,2's)=U(s) K(z,7'|s) .

)

The reduced kernel K (z, 2| s) can be evaluated following Schwinger’s

approach. We have

o5 DDy pae PP (2 2 |s)=0.
Using the commutation relation

Do, Dyl =iFw,  DFu=0,

we obtain

. F By
DRl =i (g ) ARG (b
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We can differentiate this again and make use of the evolution equa-

tion

d N
(i& + D“Da> K(z,2|s)=0

to end up with

1
~ ] 2F 2 iroa =
R(z16) = g det <f - 1) A Fe TNl (2 (2 0z, 2)

where the determinant is computed with respect to the Lorentz in-
dices. Here, C(z, 2') is an integration constant which must trans-
form appropriately under the gauge group and satisfy the boundary
condition C(z, z) = 1. Substituting K (z, 2|s) into (1) yields the

further condition
CCCPD,C(2,7) = — % CCFupClz, 7).

Now, if one looks at the explicit form for Dyl (z, z') given on page

11, one concludes C(z, 2') = I(z, /).

With the notation N, = D ,W?, using the algebra of gauge-

covariant derivatives gives

U(s) W*U(—s)
U(s) (" U(=s)

U($) pac U(—s)

WQ(S) _ Wﬁ(e—is./\/)ﬁa 7
C(s) = AW (e =N
puas) = pos =2 [t (Wal01Gl0) + oOW))
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The heat kernel is

|
j. QSf 2 i a s co s b s
K(z,7|s) = _(47T3)2 det (623}“ — 1) e1P"(5)(F coth(sF))app°(s)

x (*(s) C(s) Uls) I(2,2)

with ¢“(s) defined above. This result allows one to compute the
supersymmetric Euler-Heisenberg action.

One-loop action: Buchbinder, SMK, Tseytlin (2000)
Two-loop action: SMK, McArthur(2003)

Effective gauge kinetic term

Extremely simple background
DW;=0.

The corresponding heat kernel reads
i

(ds)? I GC —is W) P(CH+isW) (2, 7))

K(z,7|s) = —

The heat kernel corresponding to the chiral Green’s function G

1 -
K (z,7]s)= _lezK(z’ Z'|s)

_ _(47;8)2 eip2/4$ 52(C _ig W) e—%paWUG(E—HSW) ](Z, Z/) .
The (gauged-fixed form of ) kernel K, has also been used for com-

puting perturbative corrections to glueball superpotential.
Dijkgraaf, Grisaru, Lam, Vafa, Zanon (2003)
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The one-lopop effective action

1 2w d(lS) —i(pp—ie)s
1—wone—loop — _§/~L / (iS)l_w Tr K+<S) € ( ) )
0

where w is the regularization parameter (w — 0 at the end of

calculation), and g the normalization point.
Tr K, (s) = /d6ztrK+(z, z|s) .

Using the explicit form for K, gives

0

2w :
H d(is) / 6, 1172 o—i(dp—ic)
1—Wone— oop — : d ! 188 .
loop (47r)2/(13)1‘” e
0

Direct evaluation gives

1 6, 12 1, 0P
1—wone—loop - = (47'(')2 /d zW?” In ?

1 O
= — A2 W? In — C.
(47?)2/ Z HM+CC

To this point, we have treated ¢ and W, to be constant. But now

we can remove such restrictions.
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