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Prerequisite and aim
We have seen that for special background chiral and vector multi-

plets,

[, 9] = DW, =0, Dyd = D, = 0,
all the propagators are expressed via a single Green’s functions
G(z,7') (chosen in different representations of the gauge group):

(O — IMP)G(z,2) = -168%=2 - &) .
Here the delta-function and the vector d’Alembertian are
Sz —2)=6" e —2)(0—0) 0 -0),
O, =D"D, — WD, + W;D* .

Finally, the mass operator M is defined by Mg = —i1d X, for
a multiplet X transforming in an arbitrary representation R of the
gauge group.
In this lecture, we will study more general (but related) situation:
(i) arbitrary background vector multiplet; (i) |[M|*> — m?*1.
Our aim will consist in developing a covariant expansion of the

corresponding propagator in powers of the Yang-Mills superfield

strengths W, and W, and their covariant derivatives.

The presentation follows mainly SMK, McArthur (2003)



Covariant derivative expansion in Yang-Mills theory

(Non-supersymmetric case)

Consider a Green’s function,
Gii’@j? SC/) =1 <QOZ<SU) @Z/(:U/» )
associated with a quantum field ¢ = (¢'(x)), which transforms

in some representation of the gauge group G, and its conjugate

©" = (p;(z)). The Green’s function satisfies the equation

A, Gz, 2') = =6z — )1,
A=V"V,, -U, 1=(6),

with V,,, the gauge-covariant derivatives,
vm: m+iAm7 [Vm,Vn]:ian, Am:Afn(CL’)T[,

and U(x) a local matrix function of the background field contain-

ing a mass term m? 1.

Gauge transformation:
V, — Ty, o0 L @,y () i)
and therefore

G(z,z') — elm() G(z,z") e_iT(‘”,),

with 7 = 71(2) Ty = 71,



Parallel transporter

Let v(t) be a curve connecting two points, z and z’.
v [0,1] — R&HL vy0)=2", ~v(1)==x.

Introduce the operator of parallel transport (also known as Schwinger’s

phase factor or Wilson's line), I,(¢), along the curve,
L(t): 0] -G, IL(0)=1,
d
(5 +18" (@) An(®)) L) =0,

with G the gauge group. We have
I(z,2")=1,(1) =Pexp (—i/ A d:l:m) :
gl

Let v = 7 be the geodesic connecting x and z”:

/

Y(t)=t(x—2")+ 2.
The two-point function
I(z,2") =L, (z,2)

will be called the parallel displacement propagator.
DeWitt (1963)



Main properties of the parallel displacement propagator:
(i) gauge transformation law
[(z,2) — ™@ [(z,2") e ™) .
(ii) boundary condition
I(z,x)=1;

(iii) master equation

(x — 2V, I(z,2") = (z — 2')° (aa + iAa(x)> I(z,2/) =0 .
The master equation implies

(=2 . (x—a) "V ...V, I(x,2") =0, n>0,
and therefore

Vi -V I(2,")

/:0, n>0.

1" T=X

Further property:

[(z,2') I(z',2) =
By hitting this identity with (z — 2’)*d',, and then adding
(x —2")" Iz, 2") (1 Au(2') — 1 Au(x ))I(:U,:z:):()?weget

(x — 2V I(z,2") = (x — 2')° (8'a I(x,2') —il(z,2) Aa(:c')> =0.

Hermitian conjugation:
f
<I(.:L',x')) =I(z,x) .
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Covariant Taylor expansion
Barvinsky, Vilkovisky (1985)
Let o(x) be a field transforming in some representation of the

gauge group. Then
1
o(x) = I(z,2) Z —(r—2)". . (z—2" )"V, ...V, o).
Barvinsky, Vilkovisky (1985)

The covariant Taylor expansion implies the following:

Identity (x)

o0

Vol(z,2')=1I(z, ) Z n

— (n+1)!
X V;l ce v;n_lFanb<x/) )

(x — )" ... (x—a")™

or equivalently

Identity ()

Avramidi (1990,2000)

Derivation is given in the Appendices.



Fock-Schwinger gauge
Let us fix some space-time point 2’ and consider the following

gauge transformation:
(@) = (2, x), 7@ = 1
Applying this gauge transformation to I(x,z’),
I(z,2) — ™ [(z,2") e ™)

the result is
I(z,2))=1,
which is equivalent, due to (x — 2")* V, I(x,2") = 0, to the Fock-
Schwinger gauge
(x — 2" Ap(x) =0.
Fock (1937)
Schwinger (1951,1973)

In the Fock-Schwinger gauge, the identity (%) becomes

- n a a a
Ayfz) = T (x— 2. . (x—2)(z — )

n=1

XV;l Ce V;n_lFanb(l'/) .

Shifman (1980)
Thus, all coefficients in the Taylor expansion of A(z) acquire a

geometric meaning.



Proper-time representation:

G(x,z') = i/oo ds K(z,2'|s) ,
0
where the so-called heat kernel K(x,2'|s) is formally given by
K(x, 2'|s) = e*BHie) sz —a/)1 | e — 40,
and possesses the gauge transformation

K(z,2'|s) — ™ K(z,2/|s)e 7))

Covariant momentum representation:

d
0w —a)1=0%e — ) I(2,2) = / ((21 ]§d e =) Iz, 7Y
s

eik.(az—x’) [(SE,CE’) N eir(:c) {eik.(:c—x') ]([E’,flfl)} e—iT(:c/) .

The heat kernel takes the form

4% . "o .
K(x, l’l‘S) _ / (27T>d elk.(x—x)els[(v+1k)2—u} I(.CE, CU/)

/ddk e—ik2+is_1/2k.(x—:c’) e[isv2—2sl/2k.V—isLt] I(z,) .

1
" (4n2s)i
The second exponential should be expanded in a Taylor series.
Whenever a covariant derivative V from this series hits I(x, z'),
we apply the identity (x). Given a product U(x) I(x,z’), we rep-

resent 1t as

8
&

|
~
E~%
&
M
S | =
s

|
E%

U) Iz,

=2V VL U



A generic term in the Taylor expansion involves a Gaussian mo-

ment of the form
1
(472 S)d/2

where each k% comes together with an s-independent factor of

<ka1 o kan> = /ddk e—ik2+is_1/2 k.(z—2") 81/2/€a1 o 81/2]€an 7

V..; there also occur insertions of sV# and sU. To compute the

moments, introduce a generating function Z(.J),

1 dy. —ik2+is /2 k. (z—a) +s1/2 Tk
872
k. kM) = A
< ) OJy, ...0Jq, (Do
1 i 12 fe 72 /
7(]) = ——— i(z—a")?/4s —isJ=/4+J.(x—2)/2 .
)= Gy © ¢

As a result, the heat kernel takes the Schwinger-DeWitt form:

i

K(:U,:L‘”S) We<x 7! /48 Zan .CC 33)(18)
n=>0
where
=1
ZEQE _ZC '(x/_x)mpvﬂu"-vmp](iﬁ,x/)=]<£C,$/).
=0

The Schwinger-DeWitt coefficients a,, have the form
an(z,2')=a,(F(x), VF(z),...,U(x), VU (x)...;z — ") I[(z,2)
= [(z,2")a,(F(2),V'F('),.... U"),VU) .. ;0 —2),

where the functions a, and a/, are straightforward to compute

using the scheme described above.
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Covariant derivative expansion in SYM theory

2™ = (z™ 6" 0,) coordinates of ' = 1 superspace.
Dy = (0,, D,, DY) flat superspace covariant derivatives.

Supersymmetric Cartan 1-forms w” = (W% w®, Ws)
Az 0y = w? Dy : wd = (dz® — idfo"0 +160°dh, A6, d@d) .

Let 2M(t) = (z — 2/)™ ¢ + 2’ be the straight line connecting two
points z and 2’ in superspace, 2M(0) = /M and 2M(1) = 2M. We
then have M 9,y = (4 Dy, where the two-point function ¢4 =
Az, ) = —CA(, 2) is

()t = (& — ) — (0 — 0)0"F + 00— F) ,
(=9 =0-0),

=00

The parallel displacement propagator along the straight

line, I(z, z'), is specified by the requirements:

(i) the gauge transformation law
I(z,2)) — ™ I(z, ) e ) .
(ii) the equation
(DA I(z, 7)) = CA(DA + iFA(z)>I(z, 2)=0;
(iii) the boundary condition

I(z,2)=1.



Consequences:
I(z,2)I(Z,z)=1.

We also have
DY I(2, ) = (D I(,2) = 1 1(2, ) Ta(2)) = 0.
Further, using the identity
¢¥ Dp¢t = ¢,
from the master equation one deduces
(A (MDY L Dy I(2,7) =0
The latter leads to

Dia,---DayI(z,2)],_, =0, n>1,

Z=Z

where (...} means graded symmetrization of n indices (with a fac-
tor of 1/n!).

Covariant Taylor expansion
Let W(z) be a superfield transforming in some representation of
the gauge group,

U(z) — 7 w(z) .

Then

=1
U(z)=1(z,2) ) ~ ¢ D LD D)
n=0



The covariant Taylor expansion implies

Identity (x)

. =~ 1
Dpl(z,2)=11(z,2") Z 1 D) {nCA” e CAlD'Al ..D)y Fa,B(?)
—~ (n !
1
+ é(n — 1) ¢ Ty, g ¢t DY Dy Fa C(Z/)} :

or equivalently

Identity (%)

Dpl(z,2)=i) (—1)“‘ { — (M MDY, Dy Fa, p(2)

X I(z,2') .

SMK, McArthur (2003)

Supersymmetric Fock-Schwinger gauge
[(z2,)=1 <= (Tu2)=0.

Orndorf (1986)
In this gauge

(0. 9]

1
n=1 '
1
+5n—1) (4T, gC ¢t DY DY Fa, o)}

10



We are finally prepared to study the superspace Green’s function

introduced at the beginning of this lecture.
(O, —m?») G(z,2) = -18%(z — 7)) .
Introduce the proper-time representation for G
G(z,7) = i/ dse =19 [0(2 2s) | e —+0,
0

where the heat kernel K(z,z/|s) has the formal representation

K(z,7|s) =e* 6%z — 21,
and possesses the gauge transformation

K(z,2]s) — ™ K(z,2|s)e ™) .

Momentum representation for the superspace delta function:

Ak Pk e e
58(2_2/)_/ 1k (v—a') CC /(271-)4 elki Pa CQCZ

=—/ o e [ et

Covariant momentum representation:

58(2—2)1—/(dk e (3 (2, 2

d4 /d2 /d2 i [k pg+EYCat+RalY ]]<Z,Z,) .
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The heat kernel can now be represented as follows:

d4]€ i a ) ) N R
K(Z, Z/‘S) = / (27T)4 elk Pa els[(D+1k)2_W Do+W,;D ]
x (2% I(z, 7).

The covariant derivative expansion for K(z, 2’|s) follows from this
representation, in complete analogy with the non-supersymmetric

case.

Evaluation of the heat kernel obtained can be carried out in a
manner almost identical to that outlined for the non-supersymmetric

case. The result is the following asymptotic expansion:

1 i s - -\
K(z,2|s) = —wec Ga/t Zan(27 2) (is)"
n=0

where

=1
ap(z,2) =) — (=" p" ... p" Dy ... Dy, 540 — 0 I(z, 2
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Append. A: Derivation of covariant Taylor expansion

Consider the straight line connecting two points z and z’.

M)y = (2= WMt + M 2(000=2", z(1)=z,
d
M A A
Ooy=C"D — (" =0.

Given a gauge invariant superfield U(z), for U(t) = U(z(t))

we have

d"U
dtn
since ¢4 = 0. This leads to a supersymmetric Taylor series

= (M (M Dy, ... .Dy U,

n

=1
U(z) = ZE&” LDy D U
n=0

Now, let W(z) be a superfield transforming in some representation
of the gauge group. Then U(z) = I(2/, z) ¥(z) is gauge invariant
with respect to z, and therefore we are in a position to apply the

supersymmetric Taylor expansion.
— 1

U(z)=1(z,2) ) ~ A M Dy, Dy, (12 w) U(w)],
n=0

This is equivalent to the covariant Taylor series, since

D(Al...DAn}](Zl,Z” :O, TLZl

2=z
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Append. B: Derivation of identity (x)

Apply the covariant Taylor expansion to Dgl(z, z’) considered as

a superfield at z,
=1

Dpl(z,2)) = 1(z,2) Y =M. (N Day ... Da,Dpl(w, 2], s
0 n!

We start with an obvious identity

(n+1)¢M...¢M"Da, ... Da,Dpy = (M ...¢M" Dy, ... Da,Dp

+ Y (1Pt A Dy L Dy, DDy, ... Da, .
1=1

and make use of the property of

Dia,---Da,DpyI(2,2)],_, =0.

2=z

We thus have

0=C¢M. . . ¢MDy, ... Dy Dy l(z, 7)) (% * %)

2=z

+ ) (=Pt (D, L Da DDy, ... Da, I(2,7)
1=1

The next step is to represent

(—1)BAit-t A cdn MDDy DpDy....Da,
= — (1)t MDDy [Da, Dp}Da,,, - Da,
+ (—1)BAt et A A e, Dy DDy Dy

41 n

and make use of the covariant derivative algebra,

D4, D} = Tup" Do +iFup ,

14

2=z



along with the observation

(_1)B(Ai+1+...+An)<An L CAlDAl L. DAi—lfAi BDAH—I c. . DAn ](Z, Z/)|

B 0, 1< n;

_{QAn...gAlDAl...DAn1]:AnB, i=n.
Repeating this procedure, each contribution to the second terms
in (x x x) can be reduced to the first term plus additional terms
involving graded commutators of covariant derivatives. Since the
torsion T4p" is constant, we then obtain

(n4+1)¢M ... ¢MDy, ... Dy, Dpl(z, )]

— Z(_1)C(Ai+1+...+An)<—AiTAi BCCAn 1 CAl
1=1 l
Da,... Do ... Dy I(z,2
XL A ‘C 4, (2, 2)]

tni¢h . (MDy . Da,  Fap .

2=z

z=z'

For the first term in the right hand side, we can again apply the

previous procedure, and this now simplifies since
Tap® [De, Dp} = (1) Tag” [De, Dp} = 1 Tap® Fop -
After some algebra, one then arrives at (n > 0)
(n41)¢M . . ¢MDy, ... Dy, Dpl(z, )]
=in¢...¢("Dy ... Da, Fa,

1
+3 (n— 1) ¢ Ty, 39 ¢t ¢MDy, ... Do, Fa, o

z=z'
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