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N = 1 super Yang-Mills theory

S:/dgngTevngr%/d(aztrp (WW,) + {/d6z73(gb) + c.c.} :

g
Here P(¢) is the superpotential,
1 i L i Gk
P(o) = SHij Q' + 6>\z’jk QP o"
with p;; and A invariant tensors of the gauge group.
Supersymmetric matter: Chiral superfield (scalar multiplet) ¢,

D4o = 0, transforms in a representation R of the gauge group.
o=(6) o =(4i(2)
Supersymmetric gauge field (vector multiplet):

V=Vi)T,=V",

1 _
W, = —gDQ(e_V D,e" - 1),

with 17 the generators of the gauge group. The generators are nor-
malized such that trp (77 Ty) = d;; in the fundamental (defining)

representation of the gauge group. In what follows, trp = tr.

Dy = (04, Dy, DY) are the flat superspace covariant derivatives,

0 by g Aa_ O ahas
Da:%+1(0)a58 Oy , D :a—e—d—l—l(O') anb,

(DA, D} =Tap" Dc .



Interesting sectors of low-energy effective actions

(i) Kéhler potential
/d82’ K(¢,¢'e") ;
(ii) Effective gauge kinetic term
[ = futeywiew
(iii) Euler-Heisenberg-type actions (for a U(1) vector multiplet)
/ A2 W? + / B2 WW? A(D*W?, D*W?);

More general (superconformally invariant) action

6 ) . WQWQ DQWQ DQWQ)
[awws [ 7o M Gor or )

One needs powerful diagram techniques in order to compute loop

quantum corrections to such low-energy actions.

Notation:
Superspace coordinates: 2 = (2%, 6%, ;)

Superspace integration measures:

Bz =d'zd?0d%0, dz=dzd%, dz=d'zd*.



Two frames in N = 1 SYM: 7-frame and \-frame

r-frame

The vector multiplet is described by gauge-covariant derivatives
Da= (D0 Do, D*) = Dy+ils,  Ta=Th(x)Tr,
Da,Dp} = Tap® Do +1Fap(z) Fap = Fip(2)Tr,

with I'4 the connection taking its values in the Lie algebra of the

gauge group.
Gauge transformation laws:

Dy — 7D e ) U — TG =1,

with ¥ a matter multiplet. The gauge parameter 7 = 71(2) T} is
arbitrary modulo the reality condition imposed.
The gauge covariant derivatives constitute the following algebra:
[DaDy} = {Da Dy} =0, {Da, Dy} = —2iD,;.
[Da, Dysl = 2icap Wy, [Da, Dyl = 2i 5 W
(Do Dygl =1 F 55 = —€ap 25@)/_\/5 — 43 DWWy -
The spinor field strengths W, and W, = (W,)! obey the Bianchi

identities

D W, =D W, =0 , DW,, = D WS .



Solution to the constraints:
_ — T = _Of
D, =c¢ QDOZeQ, Dd:eQ D;e L :

with Q = Qf(2) T and Q = Q! (2) T} the so-called prepotentials.

Historical comment: The term “pre-potential” was introduced
by S. J. Gates and W. Siegel in 1980.

The gauge transformation laws of Q' and

Of Of

e’ — e

e DiA=0,  A=M(2)Ty,
Q

e o eTe e N DA =0.

Covariantly chiral superfield

D=0 <= &=¢

¢7 Dd¢:0-

The gauge transformation laws of ¢ and ¢:

d — 7P, d — o .



A-frame

(covariantly chiral representation)

_of T _Of
Dy — e V' Dyt U — ey,

The gauge transformation law of D4 in the A-frame:

Dy — *Dye™, U - PV, D A=0.
In this frame, the covariant derivatives are:

D,=¢"Dye", Dy=Ds,
with
eV:eQem, Vi=V.
Covariantly chiral and antichiral superfields in the A-frame:
d=¢, OI=¢lc".
The gauge transformation law of V:
AP URGE

In the A-frame, the 7-gauge freedom is absent (under the 7-transformations,
02 = —i7 + O(), and therefore Im €2 can be completely gauged

away ).

In what follows, we do not distinguish between ® and ¢.



N =18YM
SZ/dgz@T@+%/d%tr (W W,) + {/dﬁzP(cb) + C.c.} ,

g
|| o
P(®) = S ' + =i IRGE

Our consideration will be restricted to the special case:
N =2SYM (R — Ad®R&@R)
(D[
P = Q'

Qi
Action functional:

S = SSYM + Shyper )
1
SSYM = tr (/d82 (I)T(I) + /dGZ WaWa) = Sscal + Svect ,
9

Shyper:/d%(g*% Q9" —i/dﬁz Q®Q+i/d62 QfoTor .

Massive case is equivalent to coupling to a “frozen” Abelian
N = 2 vector multiplet:

Gauge group G — G x U(1)

Adjoint chiral multiplet & — & + u 1, (= const

N =1 vector multiplet W, — W,

Quantum superconformal (finite) theories:

tI‘Ad (I)Q = tI“R(I)Q.



Background field quantization
Grisaru, Rocek, Siegel (1979)

Split the dynamical variables into background and quantum ones,

® — d+p, QO — Q+q, O — O+4q,
Da — e_UDaev, 2_)@ — Z_)d,

with lower-case letters used for the quantum superfields. We will
not be interested in the dependence of the effective action on the

hypermultiplet superfields, and Q@ = Q = 0 in what follows.

The action Sgyy turns into

1
Ssym = — tr (/dgz (@4 ) e (P+p)e ™’ + /d6z WO‘Wa> :
9

where
1 N2/ .—V v 1 N2 1
W, = —gD (e Dye’- 1) =W, — ép (Dav — é[U,DaU]
1 1

42, [0, Dar]] = o, o, o, Do)} ) + O(7) .
The hypermultiplet action takes the form
Shyper - / dgz (qT e’ q -+ (je_v (f)

—i/d6z GO+ p)g +i / Az ¢'(@ + ¢)Tgh .



Appendix: Technical details

Background-quantum splitting:

e =B : e = B oMo
of ol of qf of, —qf
e- =e Qe'B e =e Be ¢

Covariant derivatives:
D,=c e "B D, "B =y :
_ oot = _of _qf b of
Dd:eQQeQB Dg;e QBe 2 = eQQVQ 29 )

Vi = (Va4 Va, VY) the background gauge-covariant derivatives.

For a covariantly chiral superfield
V=cy, DU =0 = Dyp=0,

we get
oot t _
U=c"es e =c’qp,  Vap=0.

1) background covariantly chiral superfield.



Background gauge freedom:

T : T
eQB ., 7B eQB e iAp 7 Dd)\B

T : t :
o —  eBete B

Y — B
Quantum gauge freedom:
T T
eQB D eQB ,
T : T
o — e
Y — ey

Introduce quantum gauge field
eV = e''Q eQTQ .

Background gauge freedom:

eU SN e1’7'B eU e—lTB )

Quantum gauge freedom:

v oy ve—i)\Q .

e — e’ Q¢

Quantum A-frame

(quantum chiral representation)

_of T _
DAHeQQDAeQQ <~— D,=¢"V,e",

]
U — e %y,

Qe e , ?d)\Q =0,

In what follows, we do not distinguish between D4 and V 4.
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Supersymmetric 't Hooft gauge (a special case of the supersym-

metric Re-gauge)

Ovrut, Wess (82)
Banin, Buchbinder, Pletnev (2002)

Nonlocal gauge conditions (to eliminate the v-p-mixing):
—dy =D% + [0, (0,) D%l = D> + [@, D*(O_) L',
— 4y =D — [®1 (O)"'D%p] = D% — [®F, D*(O,) Y] .
Here [, is the covariantly chiral d’Alembertian,

1
Oy =D"Dy = W'Dy — (D W) ,

1 _ _
D+qf:1—61>21>2\1/ . DU =0,

for a covariantly chiral superfield W,

Similarly, [1_ is the covariantly antichiral d’Alembertian,

. 1 - .
D_:DaDa+WdD@+§(DaWO‘),
_ 1 o _
D_qf:1—61>21>2qf, DV =0,

for a covariantly antichiral superfield W.

Important properties:

D’O,=0_Dp*, D*0O_=0,.D>.
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The gauge conditions lead to the Faddeev-Popov ghost action
Seh = tr/d8z (@ — & {Lyja(c+c") + Ly coth(Ly)(c —c)}
—tr [ % {6, 0)@) e 01+ o) + 6, 8@ e, @+ 61}

where Lx Y = [X,Y]. Here the anticommuting ghost superfields,

c and ¢, are background covariantly chiral.

Usetul gauge-fizing functional:
Sef = —tl“/dSZXTX :
The quantum quadratic part of Sgyn + Sef 1S

SGhe+ S =t [ (el - B 0,0 (01
1
— §tr/d82v (Oyv — [®F, [®,0]) + ...
where the dots stand for the terms with derivatives of the back-

ground (anti)chiral superfields ® and ®.

L1, is the vector d’Alembertian,

O, = DD, — W*D,, + W;D*
1 1 _ 1
= _§DQD2D04 + 1_6{1)27 D2} — W'D, — é(DaWa)

1 _ _ . 1 _ . 1 - .
— —éDdD2DO‘ + 1—6{1)2, D*} + WD + 5(deva) .
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The gauge-fixing functional chosen is accompanied by the presence
of the Nielsen-Kallosh ghost action

SNK:tr/d%bTb,

where the anticommuting third ghost superfield b is background
covariantly chiral. The Nielsen-Kallosh ghosts lead to a one-loop

contribution only.

The background superfields will be chosen to form a special on-
shell N = 2 vector multiplet in the Cartan subalgebra of the gauge
group:

(@, 9] = DW, =0, D, = 0.
Such a background configuration is convenient for computing those

corrections to the effective action which do not contain derivatives
of & and ®F.
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The quantum quadratic part of the action Spyper is
2 . . _ -
Sl(ly)per = /dgz (¢"q+dqh + /dﬁzq/\/qu+ /dGZqTMlJ[:{qT :
Here the “mass” operator M is defined by

MpX=—-19X

for a multiplet X transforming in the representation R.

The action S@M + Sagr becomes

1 1
Sé%?l\/[ + Scr = —2tr/d8,z (¢T—(D+ — [MaaPe
9 . Ly
—50(0, = [MaaP)o)
The qudratic part of the Faddeev-Popov ghost action becomes
Séi) = tr/dS,z (CT(D+)_1(D+ — [Madl)e

OO = [Maal)e)

The adjoint “mass” matrix:

MpaL=—i[0,%],  |Mag?E =01, [0,%]] = [, [T, X]] .

13



Covariant Feynman propagators

All the Feynman propagators associated with the actions

Sii+Sar,  SY . S

gh 7 hyper ?

can be expressed via a single Green’s function in different represen-
tations of the gauge group. Such a Green’s function, G®)(z, 2/),

originates in the following auxiliary model
SH — /d% (0, — [MpHT

which describes the dynamics of an unconstrained complex super-
field X transforming in the representation R of the gauge group.

The relevant Feynman propagator reads
GW(z,2) =1 (0]T (B(2) £1(2))[0) = 1 (3(2) XM(")
and satisfies the equation

(Oy — IMp|H) GV (z,2)) = =168z — 2) .

Important identities:

DW,=0 —
O, D?=0,D%, O, D? =0, D?,
O, D* =0, D%, O, D?=0_D%.
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The Feynman propagators in the model S@M + Sar are

_ —G(Ad)(z, Z/) 7

—~
c
—
I\
~—
<
=
—~
N
—
~
|

1 _
1_6D2D/2 G(Ad)<z, Z/) 7

—~
S
—~
N
~—
AS)
—=
/N
N
—
~
I

[t is understood here that v and ¢ are column-vectors, and not

matrices as in the preceding consideration.

The Feynman propagators for the action S éi) are:

i (6(2) c(2)) = —i{c(2) E'(2)) = 1—161521)’2 GAD (2, 2"
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2)

To formulate the Feynman propagators in the model Sﬁyper, it is

useful to introduce the notation

q= (qT> . d'=(d 9.
q

Then, the Feynman propagators read

—t
—~
N
—
~
|
j=v)
B
—
B
N
—

i(q'(2) q

where the covariantly chiral (G ) and antichiral (G_) Green’s func-

tions are related to G as follows:

_ 1 _
G (z,72)= —iDQG(z, 2 = —ZD’QG(z, 2,
1 1
G_(z,7) = —1D2G(z,z') = —ZDQG(Z, 2.
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Exercise

Demonstrate that the cubic and quartic parts of Syect are:

1 1 - 1
S&Z’gt: étr/dégz (v, D] (g DQDQU+§[W@,U]) :

1 1 _
S = —gtr/dgz v, D*v| (éDQ[U,D@U]

vect
1 1
—E[U,D D] + §[U’ v, WAl ] -

Using the algebra of gauge-covariant derivatives that the function-
als S (3>t and S

e veet are real modulo total derivatives.
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