9. ÜBUNG ZUR QUANTENMECHANIK II

Abgabe der schriftlichen Aufgaben: 21.12.2007 Besprechung der Präsenzaufgaben: 7.1.2008

P 22 Darstellung der Drehgruppe für Teilchen mit Spin 1/2 (16 Punkte)

Für allgemeine Drehimpulsoperatoren $\vec{\mathbf{j}}$ mit Komponenten $\mathbf{j}_1,\mathbf{j}_2,\mathbf{j}_3$ sollen die Beziehungen

$$\mathbf{j}_3|j\,m\rangle = m|j\,m\rangle \tag{1}$$

$$\vec{\mathbf{j}}^{2}|j\,m\rangle = j(j+1)|j\,m\rangle \tag{2}$$

$$\mathbf{j}_{\pm}|j\,m\rangle = (\mathbf{j}_1 \pm i\,\mathbf{j}_2)|j\,m\rangle = \sqrt{j(j+1) - m(m\pm 1)}\,|j\,(m\pm 1)\rangle \tag{3}$$

gelten, die für den Fall des normalen Drehimpulsoperators, $\vec{\mathbf{j}} = \vec{\mathbf{L}}$ mit j = l, bekannt sind. Wir wollen jetzt die \mathbf{j}_i als lineare Abbildungen auf \mathbb{C}^{2j+1} auffassen, und die $|jm\rangle$ mit $m \in \{-j, -j+1, \ldots, j\}$ seien eine geeignete Basis von \mathbb{C}^{2j+1} .

Dadurch ist auch der Fall j=1/2 definiert, den wir im folgenden betrachten wollen. Wir haben es dann gerade mit dem Spinoperator $\vec{\mathbf{S}}$ mit Komponenten \mathbf{S}_i zu tun. Die Basisvektoren sind dann

$$\left|\frac{1}{2}, +\frac{1}{2}\right\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \quad \text{und} \quad \left|\frac{1}{2}, -\frac{1}{2}\right\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}.$$
 (4)

Zeigen Sie:

- (a) $\vec{\mathbf{S}} = \vec{\sigma}/2$ mit den Paulimatrizen σ_i erfüllt obige Beziehungen.
- (b) $\sigma_1, \sigma_2, \sigma_3$ und $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ bilden eine Basis der hermiteschen komplexen 2×2 -Matrizen.
- (c) Es gilt

$$\sigma_k \sigma_l = \delta_{kl} + i\varepsilon_{klm} \sigma_m \tag{5}$$

und damit

$$(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i\vec{\sigma} \cdot (\vec{a} \times \vec{b}).$$
 (6)

Hinweis: Betrachten Sie $[\sigma_k, \sigma_l]$ und $\{\sigma_k, \sigma_l\} = \sigma_k \sigma_l + \sigma_l \sigma_k$.

(d) Es gilt

$$\rho_{1/2}(R) \equiv \exp(-i\vec{\omega} \cdot \vec{\mathbf{S}}) = \cos\frac{\varphi}{2} - i\frac{\vec{\omega} \cdot \vec{\sigma}}{\varphi} \sin\frac{\varphi}{2}, \qquad (7)$$

worin $\vec{\omega}$ der Drehvektor zu einer Drehung $R \in SO(3)$ ist und $\varphi = |\vec{\omega}|$. Betrachten Sie insbesondere die Fälle $\varphi = 0$, 2π und 4π . Folgern Sie, daß $\rho_{1/2}$ keine eindeutige Abbildung der Drehungen ist.

Wir betrachten nun die lineare Abbildung

$$h: SU(2) \rightarrow SO(3)$$

 $\alpha \rightarrow h(\alpha),$ (8)

 $h(\alpha)\vec{e}_k = h_{jk}(\alpha)\vec{e}_j$ für orthonormale Basisvektoren \vec{e}_i von \mathbb{R}^3 , mit

$$\alpha \sigma_k \alpha^{\dagger} = h_{ik}(\alpha) \sigma_i \,. \tag{9}$$

- (e) Überprüfen Sie:
 - (i) Für jedes $\alpha \in SU(2)$ ist $h(\alpha)$ eine orthogonale Abbildung. Hinweis: $\vec{a} \cdot \vec{a} = -\det(\vec{a} \cdot \vec{\sigma})$ (warum?).
 - (ii) $\pm Id \in SU(2)$ werden auf $Id \in SO(3)$ abgebildet.

Bemerkung: Man kann weiterhin zeigen, daß $Bild(h) \simeq SO(3)$, d. h. daß sich für jede Drehmatrix R ein $\alpha \in SU(2)$ finden läßt, so dass $R = h(\alpha)$. h wird oft als (doppelte) Überlagerung bezeichnet, SU(2) entsprechend als Überlagerungsgruppe von SO(3).

Wir können nun eine Darstellung von SU(2) auf dem Hilbertraum $\mathcal{H}_{1/2}$ der Spin-1/2-Teilchen

$$D_{1/2}: SU(2) \to Aut \mathcal{H}_{1/2}$$
 (10)

definieren durch

$$(D_{1/2}(\alpha)\chi)(\vec{x}) = \alpha\chi(h^{-1}(\alpha)\vec{x}) = \alpha\chi(R^{-1}\vec{x}). \tag{11}$$

(f) Überprüfen Sie, daß es sich hierbei um eine unitäre Darstellung handelt.

Schließlich induziert diese Darstellung der Überlagerungsgruppe SU(2) eine Strahldarstellung der Drehgruppe SO(3) auf $\mathcal{H}_{1/2}$. Dazu wählt man zu jeder Drehung $R \in SO(3)$ zunächst einen — wie wir gesehen haben: nicht eindeutigen — Repräsentanten $\alpha \in SU(2)$, für den $R = h(\alpha)$. Danach kann obige Darstellung der SU(2) verwendet werden.

S 23 Klein-Gordon-Gleichung bei elektrischem Potential (4 Punkte)

Zeigen Sie, daß in Anwesenheit eines elektrostatischen Potentials V die erhaltene Dichte und der erhaltene Strom der Klein-Gordon-Gleichung gegeben sind durch

$$\rho = i\hbar \left(\phi^* \frac{\partial \phi}{\partial t} - \phi \frac{\partial \phi^*}{\partial t} \right) - 2eV \phi^* \phi$$

$$\vec{J} = -i\hbar c^2 \left(\phi^* \nabla \phi - \phi \nabla \phi^* \right). \tag{12}$$

Hinweis: Überprüfen Sie, daß diese die Kontinuitätsgleichung erfüllen.

 $We itere\ Information en\ unter: \\ http://www.thphys.uni-heidelberg.de/\sim ewerz/qm2-0708.html$