PHYSICAL REVIEW RESEARCH 2, 023301 (2020)

Quantum critical thermal transport in the unitary Fermi gas
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Strongly correlated systems are often associated with an underlying quantum critical point which governs
their behavior in the finite-temperature phase diagram. Their thermodynamical and transport properties arise
from critical fluctuations and follow universal scaling laws. Here, we develop a microscopic theory of thermal
transport in the quantum critical regime expressed in terms of a thermal sum rule and an effective scattering time.
We explicitly compute the characteristic scaling functions in a quantum critical model system, the unitary Fermi
gas. Moreover, we derive an exact thermal sum rule for heat and energy currents and evaluate it numerically
using the nonperturbative Luttinger-Ward approach. For the thermal scattering times we find a simple quantum
critical scaling form. Together, the sum rule and the scattering time determine the heat conductivity, thermal
diffusivity, Prandtl number, and sound diffusivity from high temperatures down into the quantum critical regime.
The results provide a quantitative description of recent sound attenuation measurements in ultracold Fermi gases.
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I. INTRODUCTION

Thermal transport caused by temperature gradients is ubiq-
uitous in nature and typically occurs in a diffusive manner.
A calculation of the corresponding thermal conductivity «
and the associated thermal diffusion constant Dy =« /c,, is
often based on a kinetic theory description like the Boltzmann
equation. This works well, e.g., in metals at low temperature
and allows one to understand the origin of universal laws
like the Lorenz ratio L = k /o T — Lo = %k} /3e* between
the thermal and the electrical conductivity o as predicted
by Wiedemann and Franz. In strongly correlated systems,
sometimes called bad metals [1], the underlying Fermi-liquid
description does not apply, however, and L deviates substan-
tially from its ideal value L [2,3]. Developing a microscopic
theory for thermal transport in non-Fermi liquids has been
a major challenge for many years. It has been approached
using a number of different techniques like the memory
function formalism [4]. In a number of cases, a possible
and phenomenologically often successful strategy to describe
transport in the absence of well-defined quasiparticles is to
assume the existence of an underlying quantum critical point
(QCP) [5]. Transport in the quantum critical regime (QCR)
above the QCP may then be analyzed in terms of critical
fluctuations where decay and scattering rates typically scale
linearly with temperature according to a Planckian law 77! o
kgT /R [5-T7], a behavior which has been observed recently
in the thermal diffusivity of near optimally doped cuprates
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above the superconducting transition [8]. The aim of this
work is to develop a microscopic theory for thermal transport
in a much simpler system with a quantum critical point,
namely, the unitary Fermi gas (UFG) [9,10]. This system has
a QCP at zero density which is both scale and conformally
invariant [11-14]. In the quantum critical regime above this
point, the thermal wavelength Ar = h/~/2amT (we set kg =
1 throughout the paper) and the characteristic time 7i/T are the
only relevant length scales and timescales. Correlation func-
tions involving observables that do not develop anomalous
dimensions associated with details of the interaction at short
distances thus obey simple scaling laws [10]. This applies,
for instance, to the shear viscosity 1 and the related ratio
n/s with the entropy density s, which turns out to be not far
above the well-known Kovtun-Son-Starinets bound [15-18].
Similarly, the spin diffusion constant D; exhibits the quantum
critical scaling behavior, and a minimum value D; >~ 1.3 /i/m
has been measured and determined theoretically [19-22].
Very recently, experiments with dilute ultracold atomic
gases have realized homogeneous Fermi gases [24,25] and
opened the possibility to access local thermal transport via
the diffusive spreading of density and thermal wave packets
propagating in a sufficiently large box [23,26-29]. These
experiments are considerably more sensitive than previous
global transport measurements from trap collective modes.
For instance, the measurements of the hydrodynamic sound
dispersion w, = ¢,q — iDgounag®/2 + ... in a homogeneous
unitary Fermi gas of °Li atoms at MIT [23] provide both
the speed of sound ¢, and the sound diffusivity Dsoyna =
(4/3)Dy, + (cp/cy — 1)Dr [30]. Knowledge of the kinematic
viscosity D, = n/(mn) [16,17] and the Landau-Placzek ra-
tio LP =¢,/cy — 1 (Fig. 7 below) gives then access to the
thermal diffusivity Dy in the quantum degenerate gas (see
Fig. 1). Theoretical results for thermal transport are so far
available only at high temperature from the virial expansion
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FIG. 1. Thermal diffusivity Dy (red) and sound diffusivity Dsoyng
(blue) vs temperature 7' /T in the quantum critical regime of the uni-
tary Fermi gas. Theoretical results from Luttinger-Ward calculations
are shown in comparison with sound diffusion measurements [23].

[31]. It is the goal of this work to compute thermal transport
at low temperature and in particular in the quantum critical
regime.

In the following, we compute thermal transport in the
quantum critical region of the unitary Fermi gas based on a
decomposition of the thermal conductivity as a product

kT = )(L T, ()

of a nontrivial, thermodynamic sum rule X;;; for the heat
current response and a thermal scattering time 7, which can
formally be derived within a memory function approach (cf.
Sec. II). We show that both factors of this decomposition
can be described by universal scaling forms which smoothly
connect the quantum critical to the high-temperature regime,
where a virial expansion for the thermodynamic properties
and a Boltzmann equation for the associated scattering time
is applicable. In Sec. III we derive an exact expression for
the thermal sum rule XqTq in terms of Green’s functions with
the help of Ward identities for energy and particle-number
conservation. Based on nonperturbative results for the Green’s
functions from a fully self-consistent Luttinger-Ward com-
putation [32-34], we evaluate XqTq numerically. We find a
strong enhancement of spectral weight in the quantum critical
regime compared to the noninteracting gas which reaches
two orders of magnitude in the quantum critical regime just
above the superfluid transition. In Sec. IV we compute the
thermal scattering time 1, of order T /K using a large-N
expansion. Quite unexpectedly, the time 7, extrapolates in a
simple manner from the Boltzmann gas limit down into the
quantum critical regime. In Sec. V, we combine the results
for the sum rule with the scattering times in Eq. (1) to predict
the thermal transport coefficient «, the diffusivity Dy shown
in Fig. 1, and the Prandtl number Pr. In particular, we find
good agreement with the experimentally observed values in
the quantum critical regime. We conclude with a discussion in
Sec. VL.
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FIG. 2. Phase diagram of the spin-balanced, unitary Fermi gas at
finite temperatures [36]. The QCP at T = 0, u = 0 is the starting
point for the phase boundary of the homogeneous superfluid at
T. = 0.4 (solid line). The dashed lines mark the crossover to the
quantum critical regime above the QCP.

II. QUANTUM CRITICAL THERMAL TRANSPORT

In this section we first define the quantum critical regime
of the unitary Fermi gas in Sec. Il A, and discuss the crossover
to classical critical behavior close to the finite-temperature
superfluid transition. In Sec. II B, we discuss the formal struc-
ture of how to compute thermal transport in linear response
from the Kubo formula and its evaluation within the memory
function formalism.

A. Quantum critical regime

Dilute ultracold Fermi gases interact via a short-range
attractive interaction between different spin components [35].
At low temperature, atoms scatter predominantly in the s-
wave channel with scattering amplitude f(k) = —1/(a™" +
ik), which is fully characterized by the s-wave scattering
length a. Here, we focus on the unitary limit 1/a = O that
gives rise to a strongly interacting system as the standard
perturbative expansion in a small gas parameter nla|’ < 1
breaks down. The phase diagram shown in Fig. 2 exhibits
a quantum critical point at vanishing chemical potential and
temperature © = T = 0, which separates the vacuum state
at u < 0 from a homogeneous superfluid (SF) state at © >
0 [10,11,36]. Here, all energies are expressed in terms of
E, which is of the order of the van der Waals energy that
sets the cutoff scale beyond which details of the interaction
potential start to matter. The universal description based on
the model Hamiltonian (10) below is thus applicable only for
w, T <« E. In the absence of a finite effective Zeeman field
h = (4 — py)/2 which may lead to nontrivial phases with a
finite spin population imbalance [33,34], the phase diagram is
characterized by a single dimensionless parameter Su. The
superfluid state remains stable for temperatures below the
critical curve T, >~ 0.4 or equivalently (Bu). >~ 2.5 [37].
Instead, for high temperature or small fugacity z = ef* « 1
the system forms a dilute, nondegenerate gas which can be
described in terms of the virial expansion. Increasing the
fugacity z to values of order unity one enters the QCR, as
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shown in Fig. 2. In this regime, both thermodynamic and
transport properties follow universal scaling laws associated
with the zero density fixed point at 7 = pu = 0, with Bu as
the single relevant scaling variable [11].

The quantum critical scaling is replaced by the one char-
acteristic for a classical d = 3 XY model close to the super-
fluid phase transition at p.(7) =~ 2.5T. This crossover occurs
when the Gaussian correlation length &g of the quantum
model, defined by the quadratic term 1 /écz; =2m(p — pe)/ >
in the Ginzburg-Landau free energy, becomes of the same
order as the characteristic length &;. The length & =~ 1/ug
is associated with the coefficient uy of the quartic term
(/A1) [$2(x) + p3(x)] of the classical ¢* theory for a com-
plex scalar field ¢(x) = ¢;(x) + i¢»(x) that depends only on
space. This term may in principle be derived from the usual
complex order parameter (X, ) for the superfluid transi-
tion by integrating out all nonzero Matsubara frequencies
Q, # 0. In explicit form, this has been worked out for a
generalization of the proper N = 2 component model of a
weakly interacting Bose gas to a large number N, which
yields uSE¢(a) = 9672a/23 in the N = oo limit [38]. In the
case of the unitary Fermi gas at 1/a = 0, simple dimensional
analysis requires that ug >~ 1/Ay, however, the value of the
numerical prefactor is unknown. Qualitatively, the crossover
condition & =~ &g thus gives the simple relation u — . (T) =~
kgT, which entails a Ginzburg parameter of order unity and a
very large Ginzburg region that extends up to about 27, as
discussed by Debelhoir and Dupuis [39].

In the vicinity of the superfluid transition, the quantum crit-
ical scaling of dynamical quantities is replaced by the classical
dynamical scaling. In particular, the thermal conductivity of
the UFG is described within model F [40] with dynamical
critical exponent z = % for the superfluid transition in the
universality class of the d = 3 XY model. As shown by Ferrell
et al. [41], this implies a divergent thermal conductivity

Kk ~(T =T) "~ (T -T.)"7, 2

as T — T*, which diverges with an exponent close to % since

~ 2

V=~ 3-

B. Linear response and memory function formalism
for the thermal conductivity

A formally exact expression which in principle allows to
calculate transport coefficients for an arbitrary form of the
underlying Hamiltonian is based on linear response theory and
the resulting Kubo formula. In the special case of the thermal
conductivity at external momentum q = 0, it is convenient to
consider the heat current density j¢ [42], which is defined as
the energy current j© at constant particle number, i.e., with the
enthalpy per particle w/n times the number current density j
subtracted:

=i — (w/mj=j* — (u+T3);. &)

Here, we have used the Gibbs-Duhem relation w = ¢ 4+ p =
un + T's and defined the entropy per particle § = s/n. In stan-
dard hydrodynamic terms this corresponds to the definition
of the thermal conductivity via Fourier’s law j® = —«k VT in
the absence of a particle current. Microscopically, the effect
of a weak temperature gradient is encoded in the equilibrium

retarded heat current response function from linear response
theory,

i [* ; R R

Xaq(@) = ﬁ/ dt e /d3X([J"(X,t),J”(0, 0l)eq,
0

where we suppress the argument q = 0 from now on. The

retarded commutator in Eq. (4) defines a positive and even

spectral representation of the dynamic thermal conductivity

kK(w)T = —Im Xaa (@)
w

, kK= lin%)/c(w). 4)

Since a fully microscopic evaluation of the frequency-
dependent response function in a strongly interacting many-
body system is impossible, it is necessary to reduce the prob-
lem by restricting attention to the dc response and a simplified
procedure to evaluate the characteristic timescale 7, defined
in Eq. (1). Such a procedure is provided by the memory
function formalism. It has been used to determine the dynam-
ical charge conductivity of simple metals some time ago by
Gotze and Wolfle [43] and it provides a systematic and unified
description for the derivation of hydrodynamic equations of
motion in fluids (see, e.g., the textbook by Forster [30]). More
recently, the method has been applied successfully to calculate
transport coefficients in systems without well-defined quasi-
particles [4,6,44]. It is based on a formal expression for the
Laplace transform of the relaxation function

xa8(2) = XA 1 1
iz

Pap(z) = = Xac M@ —ian®

} Xpgs  (6)
CD

in terms of a matrix x/, of static thermodynamic suscepti-
bilities of slow variables A, B,! and an associated frequency-
dependent memory matrix Myp(z) (we assume that the oper-
ators A and B have the same sign under time reversal, other-
wise an additional contribution appears in the denominator).
Provided that this matrix has a finite limit M (0) at vanishing
frequency, this leads to an expansion

xa8(2) = Xip +izxAcTen + - %)

of the dynamical response function at low frequencies, which
defines a matrix of relaxation times

tcp = M~ (0)cpxpg. ®)

Identifying xapT = ¢pap(z = 0) as the dc-transport coeffi-
cient, this leads to kapT = XATCTCB, which is precisely of
the form given in Eq. (1). In principle, therefore, the mem-
ory function formalism determines transport coefficients in
quantum many-body systems in terms of the matrix x[,
of associated static thermodynamic susceptibilities and the
zero-frequency limit Myp(z = 0) of the memory matrix. The
formal expression for Myp(z) shows that it is again a re-
laxation function but now for operators QA in which the
dynamics of the slow variables A, B is projected out by Q =

'Note that for nonergodic variables, the thermodynamic suscep-
tibility x I, differs from the corresponding static one xap(w = 0).
This results in relaxation functions that approach a nonzero limit as
t — 00, a problem which does not show up for thermal transport in
the unitary Fermi gas.
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1-— ZAB(XT)Xé |A) (B|. In practice, the memory matrix can
hardly be determined exactly. In systems without long-lived
quasiparticles, however, even approximate results for the scat-
tering times are often sufficient because the only exactly or
approximately conserved quantities are then particle number,
momentum, and energy while all other variables relax on
microscopic timescales.

In fact, much of the nontrivial structure of transport co-
efficients near quantum critical points is determined by the
associated thermodynamic susceptibilities, which is behind
the success of the memory function formalism in this context.
This turns out to be the case also for the unitary Fermi
gas studied here. Indeed, as will be shown in Sec. III, the
relevant susceptibility x qTq exhibits a rather strong dependence
on the scaling variable Su (see Fig. 4 below), while the
scattering time in Fig. 5 evolves rather smoothly from the
high-temperature limit down into the quantum critical regime,
essentially extrapolating the result obtained from a Boltzmann
equation calculation. A similar situation also applies to other
transport coefficients, such as the shear viscosity n = pt,,
where the sum rule is given by the pressure p [16], or particle
transport, where an analog of the product form (1) for the
thermal conductivity has also been found to hold.

In the following, we will determine the thermodynamic
susceptibility quq by a direct Green function approach, using
an extension of exact Ward identities first derived by Polyakov
[45] in the context of transport in the vicinity of a thermal
critical point. Since the heat current is an ergodic variable,
the result must coincide with the associated dc susceptibility,
which is given by the standard Kramers-Kronig relation

dw
Xy = / — (0,4 =00y T, ©)

as the integral of the frequency-dependent heat conductivity
k(w,q = 0) times the temperature, including a proper reg-
ularization of the divergences which arise as a result of the
assumption of a zero-range interaction in Eq. (10) below.

III. THERMAL SUM RULE

In this section we first introduce the model for the inter-
acting Fermi gas in Sec. III A, and we then express the linear
response theory for thermal transport in the field-theoretical
formulation based on Green’s functions (Sec. III B). In partic-
ular, we derive a new Ward identity for the interaction part of
the heat current, which gives rise to a novel exact expression
for the thermal sum rule (25)—(27) in terms of one- and two-
particle Green’s functions. Next, we discuss in Sec. III C the
necessary regularization of the high-momentum asymptotics.
Finally, we numerically evaluate the sum rule in the quantum
critical regime using the nonperturbative Luttinger-Ward ap-
proach in Sec. III D.

A. Model

The many-body physics of an ultracold Fermi gas with two
trapped hyperfine states (labeled 1, | ) can be described by the
grand canonical Hamiltonian for spin-% fermions with contact

interaction [10]

. . "2 .
H =/X > w;(x)<—ﬁv2—ug>%(x>

o=t}
+ &) YL OY] 0P, (0¥ (x) | (10)

The total density is controlled by the chemical potentials,
with @y = u =@y in the balanced case considered here.
In order to reproduce a finite s-wave scattering amplitude
f(k) = —1/(a~! + ik), the strength of the effective contact
potential has to be chosen appropriately. In three dimensions,
this is achieved in a standard manner by introducing a scale-
dependent coupling constant g(A), which is related to the
physical s-wave scattering length a via

3N = m/(@nh*a) — mA/(2n?h?). (11)

Here, A is a high-momentum cutoff whose physical origin
is the finite effective range r, of the actual interaction. In
the experimentally relevant case of open-channel dominated
Feshbach resonances (e.g., for 5Li at a magnetic field of
832 G [46]) the zero-range limit A — oo is an excellent
approximation because r, 2~ £,qw is of the order of the van
der Waals length £,qw and the associated momentum scale
A >~ 1/€yqw is far beyond the accessible range [10]. As a
result, the momentum distribution n,(p — 00) = C/p* ex-
hibits a power-law behavior over a wide range of momenta
with a strength determined by the Tan contact density C [47].
As will be discussed below, similar power laws also appear
in dynamical correlation functions. The unitary limit 1/a =
0 can be reached by tuning the interaction directly to the
Feshbach resonance, which is controlled by an external mag-
netic field. As a result, there is no small interaction parameter
available and a nonperturbative treatment is mandatory to ob-
tain quantitative results. The Luttinger-Ward approach results
in single-particle Green’s functions G, at finite temperature
with self-consistently resummed interaction effects and is in
good agreement with thermodynamic measurements in the
strong-coupling regime around the unitary limit [37,48].

In addition to the fermionic Green’s function G, (X, T) =
—(T,l/}a(x, r)lﬁ;’ (0, 0)), the Luttinger-Ward theory also al-
lows to determine the pair propagator

F(x, 7) = g(A)S(1)8(x)
— 3Ty )&, D [F)O0,0)),  (12)

where 7T, denotes time ordering in imaginary time 7. At
the superfluid transition temperature 7., the pair propagator
'Q =0, 2, = 0) diverges according to the Thouless crite-
rion. Furthermore, the Tan contact is obtained from the short-
distance limit [49]

— - A’=-T(x=0,7r—>0), (13)
m

where the anomalous contribution from the superfluid order
parameter A vanishes in the normal phase considered here. In
the following, both G, and I" form the basis for the evaluation
of the thermal sum rule.
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B. Linear response

In order to determine the thermal conductivity of the UFG,
we first evaluate the thermal sum rule y qTq. In contrast to other
transport coefficients such as the viscosity [16] or the spin
diffusivity [20], x qTq cannot be directly attributed to standard
thermodynamic quantities but requires an additional thermal
operator [50].

In general, the heat current response x4, () is obtained
within linear response by adding the perturbation 8H (1) =
fx ji(x,t) - h(x,t) to the Hamiltonian. Rather than working
in real time, the problem is more conveniently treated in
imaginary time t € [0, #8). Furthermore, we consider only
homogeneous source terms h(x, 7) = h(t) since we are inter-
ested in the q = O response. We express the grand canonical
partition function in the presence of the external field h as a
coherent state path integral [51] with fermionic action Sg:

Z[h] — /‘HDKZODWGei%SFw;me’h]’ (14&)

hp
ol = [ ar Y [

i )
+/0 de(H Gy Vo]

+j%(q@ =0, 1) -h(1)). (14b)

J

A P
Jjg=0)= Z o Cpo
po

iF(q=0)=

po

Z zspcpgcpa +8(A) Z

Qpp

Then, log Z is a generating functional for connected heat
current correlations

e _ slog Z[h]

(J9(q=0,7)) = —Sh(t) . (15a)
_ SZIOgZ[h]

Xaa(D) = S s |, (155)

From the latter function the retarded response in real
frequency is obtained by Fourier transforming t to the bosonic
Matsubara frequency w, and subsequent analytic continuation
iw, = w+i0t.

For the Hamiltonian (10), the particle and energy current
operators read as [30,52]

ih
Jx) = lm (Vg Vo (X) = (VY)Y (X)), (162)

VUi Ay, — AUV,
e =m Y YV Yo = oV
hg(A N
RSO IR TA T
im

(16b)

The bare energy current operator j© has a kinetic and
an interaction contribution. Considering the corresponding
operators in momentum space,

(17a)

CQy24p1CQ)2-py CQ2PLEQ2p ] (17b)

shows that the prefactor of the interaction part is only sensitive to the center-of-mass momentum Q of the pair of fermions
participating in the interaction. Therefore, this term is most easily discussed in two-channel variables with a bosonic pair field
A(x) = gy (x)¥y (x). The latter can be easily introduced by decoupling the action (14b) in the pairing channel by a Hubbard-

Stratonovich transformation. We notice that the presence of h(t) leads to the shift ¢, — &, + (g, —

e — TS)p/m - h(t) of the

bare fermionic dispersion relation and to the rescaling g(A) — g(A)[1 + Q/m - h(r)] in Sp. With these substitutions we obtain
the path integral Z[h] within the two-channel formulation in momentum space:

Z[h] = / [ [ D2, Dee DA DA 781 ce 8001

_ hp
SprlCs, co, A, A h] = / dr |:Z Ep,a(f)(ar +e&p— tho + (&p — o — Tg)B : h(f))cpa(f)
0 m

p.o

Q -1

From Eq. (15a), we thus find the expectation value of the heat current

(37(q=0,1)) =
po

S Tm)Go(p. T — 7t

where we have defined the bare fermionic and bosonic heat current vertices

75" = (e -

Tor(Q) =

(18a)
_ (1 + = -h(r)) Ag(t)Aq(T) — Z [Ap,+p, (T)ep, (T)ep,p (T) +Hee] [ (18b)
g(A) Q m = 1 2 1 2

)= Y TIQrQ.« — ), (19)

Q
Mo — TE)B» (203)

m
Q

‘(A) - (20b)
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and furthermore recovered the single-particle Green’s function G, as well as the pair propagator I" defined above. A vanishing
perturbation h(z) = 0 implies (j¢(q = 0, t)) = 0 by rotation invariance. Next, we obtain the susceptibility by taking the second-

order functional derivative according to Eq. (15b):

Xaa@® ==Y To  ®T40.7,p.0,01) + ) T (Q)
Q

po

q
T 3mg(A)

0.7.Q.0,0+) — 2®

2
Z—F(Q, 0,0M)15.3. (2D
Q m

Here, the dressed current vertices for spin component ¢ and the pairs are defined as the time-ordered expectation values

TQ, 7, P, 11, @) = (T2 JUQ, T)eprqo (Tr)eh, (12)) =

T i@ 7. Q. 11, 1) = (T (4, D) Aqg (1) A (12)) =

3G, (p, 71, T2) (22a)
sh(q, 1) |40

r(Q, 71, 2) (22b)
Sh(q.7) |pep’

while the last contribution to x,, arises from the second derivative of the A A prefactor in the action (18b). The thermal sum rule
follows by Fourier transformation to the external bosonic Matsubara frequencies w, = 0, which yields

Xag@n=0)= = Y TeOITLO0. 0, = 0.p.en) + D T QT L (0. 0, =0, Q. 2)

PO.€m

Q.

2
2y L et @3)
3mg(A)

m
Q.

This form of the sum rule in terms of current vertex functions
is analogous to the sum rules for momentum [16,53,54] and
spin currents [55]. Introducing 7 o, pair 3 the amputated coun-
terparts of Tz,pair allows one to represent the Kubo formula
for x4, and thus also the sum rule in a diagrammatic manner,
as depicted in Fig. 3, except for the last line.

Quite crucially, the exact heat current vertex 79 satis-
fies a Ward identity [45]. Extending the latter from the
fermionic to the bosonic sector, it reads in momentum space
(cf. Appendix A) as

-1
T4(p, &) = (T3 — S)M - BG;‘(P, ), (24a)
ap m
-1
The(Q. Q) = QY Qrag ) )
0Q m
(a+p,7)
’i'lJ(q’ T7p77—177-2) - e
(a,7)
(p> TQ)

FIG. 3. Diagrammatic representation of the current correlation
function (Kubo formula) and the dressed, amputated current vertex
T, The total response is given by the sum of the fermionic and pair
contributions.

(

at vanishing external arguments o = 0, q — 0 relevant for
the sum rule. The first line contains the fermionic part ex-
pressed via the single-particle Green’s function G,, while
the second line denotes the bosonic contribution in terms of
the pair propagator I'. The bare vertices 7'Z(0) and ﬂg?r)
in Eq. (20) are obtained simply by using the noninteracting
Green’s function G, ;(p, g)=¢—¢,+ pn and the inverse
bare coupling I'; 1(Q, Q) = g(A)~! inside the Ward identity
(see Appendix A).

In order to obtain the sum rule as the static limit of the
current response function given by the Kubo formula (Fig. 3)
we insert the Ward identities into Eq. (23). As a result, we
obtain the exact thermal sum rule expressed in terms of the
Green’s and vertex functions

X (T ) = XEF(T, p) + XEPN(T ), (25)
with two contributions: a fermionic part

rp 1 P

Xqq =gy W(EP_M_TE)
po€
3G, (p, i€, .
x [(ien _ 0GP i) ze,»] 26)
p ap

and a new interaction part arising from the bosonic pairs of
the form

= T,pair ( m mA )
XooP = -—
K Axh’a  272R?

1 1 <Q2 . ) :
x — > — (= —iQ, )T, Q). @7
BV o0

m\ 3m
s

Both terms can be evaluated by inserting the previously com-
puted Luttinger-Ward results for G, (p, ie,) and I'(Q, i€2,)
[32-34] as functions of momentum p (Q) and Matsubara
frequency ig, (i€2,).
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Note that the full fermionic and bosonic energy current
vertices as defined by the Ward identity (24) provide an exact
solution of the Luttinger-Ward transport equations formulated
in terms of fermionic and bosonic transport vertices [16,54].
This proves that the Luttinger-Ward approach implements
exact energy conservation, even when fermionic and bosonic
Green’s functions are obtained within the self-consistent 7 -
matrix approximation. This was indeed the goal of construct-
ing a conserving approximation, which in our case further-
more satisfies the exact Tan relations [36].

However, as indicated by the bar, these terms still depend
explicitly on the momentum cutoff A, which is manifest for
the second term. Moreover, a finite value of A is necessary
to render the momentum integrals in the fermionic part finite.
Therefore, we first have to discuss how to extract the univer-
sal results for the sum rule before presenting the numerical
results.

C. Short-distance asymptotics

Due to the contact interaction, several terms in the sum
rule (26) and (27) diverge in the zero-range limit A — oo.
This is apparent for the pair contribution, which in the unitary
limit 1/a = 0 is directly proportional to A. Indeed, one quite
generally expects a cutoff dependence of the static sum rules
for these quantum critical systems. This can be attributed to
high-frequency tails of the dynamic transport coefficients such
as « (w) defined in Eq. (5) above [6]. For instance, in case of
the shear viscosity the full sum rule reads as [16,53]

4R°CA

Pt 1572m’
where the second term arises from the high-frequency tail
n(w — o0) = h3/*C /15w /mw. The static transport coeffi-
cient p is given instead by the regularized form of the sum
rule with the A-dependent terms subtracted. As a result for the
shear viscosity of the unitary gas, one has n = pt, in analogy
to Eq. (1) in the thermal case.

These divergences arise from the asymptotic large-
momentum behavior of the fermionic momentum distribution

(ﬁxy ﬁxy)w:O = (28)

ne(p— 00) ~C/p* +Di/p° +Do/p' +---, (29

where we identify a new contribution D,/p’ that is clearly
seen in our numerical data. As discussed in Appendix B, its
origin may be traced back to a next-to-leading-order nonan-
alytical contribution '(x =0,7 — 7) ~ (8 — 7)%2 in the
pair propagator at short times. The appearance of the two
leading contributions in the asymptotic power-law decay of
the momentum distribution arises from the nonanalytic con-
tributions proportional to |x| and |x|?, respectively, in the
short-distance operator product expansion

B (R4 3) 0 (R = 3)
= fig(R) + i 'x - P, (R)

= X g Ay 0 R
3
* % h_4m2g2(A)vl2l &%%il/% lﬁT R)+--- (30

of the one-particle density matrix [56]. The coefficients C and
D, in Eq. (29) are defined through the expectation values
of the contact operator é(R) = h’4m2g2(A) &;&I&LQ&T (R)
and its second derivative Vﬁ C(R); note that in d = 3 the
Fourier transform of |x| is —87 /p* while |x|* gives 967 /p°.
The presence of a subleading term D; /p® in the momentum
distribution of two-component Fermi gases has been dis-
cussed in detail by Werner and Castin [57]. In general, the
coefficient D; also contains a contribution which involves the
derivative of the energy with respect to the effective range of
the interaction. In our model, no such contribution appears and
the full expression for D; is given in terms of the first-order
time and second-order spatial derivative of the pair propagator
[see Egs. (BS5) and (B7) in Appendix B].

Within the self-consistent 7 -matrix approximation to the
Luttinger-Ward functional the powers of momentum are cor-
rectly reproduced, whereas the contact coefficients C, D, and
D, that characterize the short-distance correlations as func-
tions of T, p, and a~! in the many-body medium are obtained
approximately. The asymptotic behavior of the numerical data
of the fermionic momentum distribution is consistent both
with the OPE and Ref. [57] up to p~°, but to our knowledge
the p~7 contribution has not been discussed before. The latter
arises from an anomalous contribution to the pair propagator
'x=0,7— B7)~ (B — 1)%? (see Appendix B).

In the fermionic part (26), the leading divergence O(A?),
which could arise from the C/p* tail of the momentum
distribution, cancels between the first and last term in the
square brackets, hence, there is no A3 divergence. Ac-
cording to Eq. (29), this leaves terms of order O(A) and
O(log(A/k)), where k denotes the momentum scale be-
yond which the algebraic power laws of the terms in X[L

dominate; in practice, one has k > 10/A7. The coefficients
of these subleading divergences depend on C, D;, and
D, (for the log term). Similarly, for the pair momentum
distribution we find the asymptotic expansion np,(Q —
o0) = 6472nC/3Q°% + --- [see Eq. (B12) in Appendix B].
This implies that the momentum sum in the interaction
term (27) is finite, while the inverse bare coupling in the
prefactor diverges as O(A). In the numerical evaluation,
we subtract all divergent terms to obtain the regularized
sum rule (9), as has been done for the shear viscosity
[16]. At unitary, in particular, the interaction term does
not contribute to the regularized sum rule as its contri-
bution scales like 1/a. Away from unitarity 1/a # 0, in
turn, the bosonic part gives rise to a new contact corre-
lation contribution to the thermal conductivity similar to
what has been found in the bulk viscosity [54,58,59]. Re-
garding the dynamic thermal conductivity, the O(A) con-
tribution implies a tail x (w — 00) ~ w~!/2, while O(In A)
causes a subleading contribution to the high-frequency behav-
ior proportional to w~!, in analogy to the discussion below
Eq. (28).

D. Numerical results

After subtracting from Eq. (25) all terms that diverge in
the zero-range limit, we find the exact result for the thermal
conductivity sum rule at unitarity where the pair contribution
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FIG. 4. Thermal sum rule scaling function fxrq vs fu for the
unitary Fermi gas: the interacting Luttinger-Ward result (25) is
substantially larger than the free-fermion result (32) in the quantum
degenerate regime.

(27) vanishes:

T __ _TF _ T’
XagT.10) = 14 (o) = = f (). G1)
T

This defines the dimensionless quantum critical scaling func-
tion f, T (Bu). In the high-temperature regime the sum rule is
given analytically by the result

3

Xad (T, ) = — [35 Li/a(—ef*)

4 125y
—10(B +3P) Lisp (=€) (32)

of a free Fermi gas. The entropy per particle is 3y =
5Lis;p(—eP*)/[2 Li3jn(—eP*)] — B, where Lig(z) denotes
the polylogarithm. In terms of density, the result approaches
mx(L — (5/2)nT? for B — —oo. Using the Luttinger-Ward
thermodynamic data allows us to extend the sum rule from the
high-temperature regime into the quantum degenerate regime
down to the critical temperature of the superfluid transition
at (Bu) >~ 2.5 [37]. To obtain reliable results after the sub-
traction of the nonintegrable, cutoff-dependent tails requires
a precise calculation of the self-consistent Green’s and vertex
functions. This has been accomplished by using a logarithmic
Fourier transform [60,61] for the transformation between real
and momentum space, while the imaginary time to Matsubara
frequency transformation is performed by a discrete Fourier
transform in combination with a spline interpolation up to fifth
order [34]. Consistency checks on thermodynamic variables
such as pressure, which contain integrals over the momentum
tails as in Eq. (26) that must remain finite in the zero-range
limit A — oo, show relative numerical errors of at most 103
in the regime considered here. This level of accuracy is a
crucial prerequisite for dealing with the more complicated
asymptotics encountered in the thermal sum rule by subtrac-
tion of the known high-momentum behavior of the Green and
vertex functions, as discussed in detail in Appendix B. The
result for x/ is shown in Fig. 4: while it agrees with x.©
in the virial limit, it shows large deviations in the quantum
degenerate regime from strong pairing fluctuations, which

lead to an enhancement of up to two orders of magnitude close
to the superfluid transition.

IV. QUANTUM CRITICAL SCATTERING TIMES

Within kinetic theory, the thermal scattering time t, is
obtained as the collision time in the Boltzmann equation
in response to temperature gradients [62,63]. While this ap-
proach becomes exact in the virial limit of a nondegenerate,
extremely dilute gas, it can be formally justified in the QCR
only within a large-N expansion in the number of fermion
flavors, thereby restoring a quasiparticle picture [36]. Quite
surprisingly, however, this method not only yields a qualitative
estimate on the physical behavior of the scattering times in
the QCR, it also allows to find a simple but quantitative
approximation as we argue below. In the Boltzmann equation
the collision integral I[f] is evaluated for a generic distribu-
tion function f,, which deviates from the thermal equilibrium
distribution f7 as f, = f) 4 8f,. For small variations 8,
the collision integral can be linearized as I[f,] ~ H[ f[?]B Ips
where the linearized collision operator H|[ fI?] acts on §f,
but itself only depends on the equilibrium distribution f;’.

The solution 5 f, = fl? a1- fz(?) )U, of the Boltzmann equation
minimizes the scattering rate, hence, the particles choose a
distribution U, to best avoid scattering. Within a family of
trial functions U, an upper bound to the true scattering rate
is found in variational kinetic theory as [62,64] (for further
details see also Appendix C)

—1 (U,HU)(X,X)

The scalar products (A, B) = de,,f[?(l — f[?)A,,B,, are de-
fined with respect to the equilibrium distribution function fz?'
The system is driven out of equilibrium by the perturbation
X,: it determines which transport channel is considered, e.g.,
X, = %[ep — (T3 + p)] for thermal and X, = % for shear
transport. The variational functions U, are arbitrary functions
of momentum that have the same angular dependence as the
perturbation X,.

The linear collision operator H[f°] for 2 — 2 scattering
between fermionic (quasi)particles (p;, p, +— py, p,) reads
as

o — vl 5 (1= £2)(1 = £2).
(34)

0
Hl?) = [arsan 2L

where momentum conservation p;, + p, = p;, + p» and en-
ergy conservation &,, + &,, = &, + &, are satisfied in elas-
tic scattering, and 2 denotes the angle between the incoming
and outgoing scattering planes. The scattering cross section
is given as do /dQ2 = |f]? in terms of the s-wave scattering
amplitude f; in the strongly interacting Fermi gas, the medium
scattering amplitude reads as [34,36]

x 1 l.|P1—P2|
a 2
2 0
+/dI‘,,8 +¢é —8?8 +i0
P 2 P~ Epi+p—p T

(35)
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FIG. 5. Thermal and viscous scattering times 7,7 //i vs B in
the quantum critical region of the unitary Fermi gas. In this regime,
both Boltzmann and large-N calculations give nearly identical re-
sults. Furthermore, the large-N viscous scattering time (blue) agrees
well even with the strong-coupling Luttinger-Ward computation [16]
(red).

to leading order in the systematic large-N expansion. While
the first two terms reproduce the s-wave scattering amplitude
at the two-particle level, the integral takes corrections caused
by the presence of a finite density medium into account. At
unitarity 1/a = 0 the constant offset vanishes, and the dimen-
sionless scattering amplitude f/A; depends on B alone.
The properties at high temperature are obtained to leading
order in the virial expansion in small fugacity z = e#* « 1,
with f;) = ¢~ the Boltzmann distribution. The resulting
scattering times are
7. T . 457 B

= —=¢
i 322

and 7,7 /h = %e‘ﬂ“ [64] already from the first variational

basis function U, « X,, and corrections from higher basis
functions are less than 1.5% for the shear viscosity [65].
Note that the high-temperature results at unitarity already sat-
isfy the quantum critical scaling form 7,7 /h = f.(Bu) with
X =k,1.

In the quantum degenerate regime, one instead has to
use the Fermi-Dirac distribution f,? = [efE= £ 1771 Two
competing effects thus modify the scattering times t,: Pauli
blocking in Eq. (34) reduces the phase space for scattering
and strongly increases the scattering time, while medium
scattering in Eq. (35) has the opposite effect and reduces the
scattering time. In case of the shear viscosity, the scattering
cross section do /d €2 even diverges at the superfluid transition
due to gapless pairing fluctuations if only a single variational
basis function U, o X, is considered. This would lead to the
unphysical result n — 0 at T, which arises from the diver-
gence of the T matrix I' ~ Q=2 for small energies. However,
an improved variational solution in a larger basis set yields a
finite result, as is expected for the viscosity near the superfluid
transition [40].

The full results are shown in Fig. 5: the surprising and
remarkable observation is that the scattering time f,(8u) is
nearly the same for the Boltzmann distribution (“Boltzmann”)

(36)

and for the Fermi-Dirac distribution (“large-N medium”), not
only for viscous [66] but also for thermal transport. Changing
the distribution fl? from Boltzmann to Fermi-Dirac modifies
the calculation in three places: (i) in the scalar product in
the variational expression (33), (ii) in the occupation numbers
of the collision integral (34), and finally (iii) in the medium
scattering amplitude (35). In the quantum critical regime,
the subtle interplay between these effects leads to an almost
perfect cancellation between the Pauli blocking and medium
scattering corrections in the large-N medium result. We find a
similar coincidence also for spin diffusion (see Appendix C).
Hence, there appears to be a general mechanism at work that
does not depend on the angular, spin, or energy weight of the
driving term X,.

What has not been appreciated before is that, even more
remarkably, also the strong-coupling Luttinger-Ward compu-
tations [16] (red) confirm this result for the scattering time as a
function of Bu for the whole quantum critical regime Su < 1
(T Z 2T.) within a 15% error bound, where the scattering
time has been extracted from the relation n = pr, in analogy
to Eq. (1). We thus conjecture that the large-N expansion
is similarly accurate for the thermal scattering time 7, in
the quantum critical regime, and we use the large-N result
(36) henceforth. Closer to the phase transition, however, the
quantum critical scaling crosses over into the classical critical
scaling of the 3D XY universality class near the superfluid
phase transition (see Sec. Il A above).

At unitarity, the scattering times thus satisfy the quantum
critical scaling form [5,36] 7, = fi(Bu)(h/T), where the
dimensionless scaling function f,(8u) depends only on the
value of Su, not only in the quantum critical regime but also
in the high-temperature nondegenerate gas; in the quantum
degenerate region S > 0, the scaling function attains values
of order unity (Fig. 5). For spin transport (Appendix C), this
is consistent with the experimental observation of quantum
critical spin drag [19] and Planckian dissipation for spin
[21,22,67].

V. RESULTS AND QUANTUM CRITICAL
TRANSPORT RATIOS

Based on the hydrodynamic arguments from above, we
arrive at the first prediction for the thermal conductivity (1),
kT = xqrqr,{, in the quantum critical regime, as shown in
Fig. 6. Here, XqT is evaluated within Luttinger-Ward the-
ory (Fig. 4) and combined with the thermal scattering time
in the Boltzmann limit (36). In the limit Bu — —o0 one
finds the Boltzmann value for the thermal conductivity «? =
225/ (64+/2) T /(hAr) [31] by using the noninteracting sum
rule (32). At lower temperatures, however, the strong en-
hancement of the thermal sum rule implies a significantly
larger thermal conductivity as opposed to the result from the
Boltzmann equation (cf. Fig. 4).

Weighting the thermal diffusion Dy with the thermody-
namic Landau-Placzek ratio LP = ¢,/cy — 1 (Fig. 7) yields
the thermal contribution LP x D7 to the sound diffusion
Dgoung shown in Fig. 1. At low temperatures above T the
decrease of LP seems to suggest that heat diffusion becomes
less important for sound attenuation near 7, but this is more
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FIG. 6. Thermal conductivity « vs temperature 7 /Ty for the
unitary Fermi gas from Luttinger-Ward calculations (red line) and
from experiment [23]. « saturates in the quantum degenerate regime
and exhibits a shallow minimum of k /n ~ 8.7h/m at T /Tr ~ 0.6.

than compensated by the increase of Dy which makes heat
diffusion rather more important.

A fluid is characterized by the relative importance of
different transport channels, which is quantified by transport
ratios. Here, we consider the Prandtl number, which is defined
as the ratio of shear and thermal diffusivities (D7 is reported
in Fig. 1)

D, (p/mn)T, pc,T

Pr=—"= = x 237

Dy (XqTq/cpT)rK mnyl = T, @37

As the last term shows, the transport ratio is a product of a
thermodynamic term that incorporates nontrivial temperature
scaling from the full equation of state, and a ratio of transport
times which we have found to remain nearly constant at
Ty /T = % throughout the quantum critical regime. Therefore,
in the unitary gas the transport ratios derive their temperature
dependence predominantly from the equation of state, and
we use the best available Luttinger-Ward equation of state

1.0
0.8 /""L‘—..’._'_.—'_‘
0.6
[al
—
0.4 — Normal Phase
— Superfluid
0.2 P
. Exp
0.0 0.5 1.0 1.5

T/Ts

FIG. 7. Landau-Placzek ratio LP =c,/cy — 1 vs temperature
T /Tr from Luttinger-Ward calculations (green below 7. [32], red
above T, [34]) and from experiment [37]. The dashed line indicates
the high-temperature limit LP = %

0.7 T
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FIG. 8. Prandtl number Pr = D, /Dy vs temperature T /Tr from
Luttinger-Ward calculations (red line) and sound attenuation mea-
surements [23]; the dashed line marks the high-temperature limit
Pr=2.

3

[32,34] to obtain the theory prediction for the Prandtl number
in Fig. 8. Note that Pr starts from a value of % in the high-
temperature limit and then grows to about 0.7 near T ~ Tf,
before it falls to much smaller values below 0.2 near the super-
fluid transition. This nonmonotonic behavior results from the
Landau-Placzek ratio [26,34] shown in Fig. 7 for the unitary
Fermi gas, and is consistent with the virial expansion [31].
At the classical superfluid phase transition (model F) [40] one
expects that 1 remains finite while « diverges according to
Eq. (2), suggesting a vanishing Pr — 0. This nonmonotonic
behavior is very well confirmed by a recent measurement of
sound attenuation in the unitary gas [23]. The value of the
Prandtl number also has an important interpretation in terms
of possible nonrelativistic gravity duals, which, however, pre-
dict Pr = 1 [68] and can therefore be excluded as a model
for the unitary Fermi gas. Another important transport ratio is
the bulk-to-shear viscosity ratio ¢ /n computed in [54], which
shows that viscous transport occurs via quasiparticles only
for T 2 Ty but deviates in the quantum degenerate regime.
The Schmidt number Sc = D, /D, comparing shear with spin
transport is shown in Fig. 10 (see Appendix C).

VI. DISCUSSION

In conclusion, we have found that transport scattering
times 7, and 7, in the quantum critical regime follow a
remarkably simple scaling law, which extends to the vicinity
of the superfluid transition where pairing fluctuations become
dominant. We have chosen specifically the unitary gas where
the quantum critical regime extends to high temperature to
demonstrate this point. This information is combined with a
new exact sum rule for thermal transport, which depends on
the equation of state and thermal operators beyond, to predict
the thermal conductivity « in the quantum degenerate regime.
For « and the Prandtl number Pr we find good agreement with
recent experiments [23].

The remarkable coincidence of the quantum critical scat-
tering times from the high-temperature Boltzmann calculation
and the strong-coupling large-N and Luttinger-Ward results
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is a unique feature of the quantum critical point at infinite
scattering length 1/a = O: the scattering times must follow
the quantum critical scaling form, which in the particular case
of the unitary Fermi gas must extend up to high temperature
by dimensional analysis, in contrast to lattice models. At
high temperature, the scattering times are reliably obtained
from kinetic theory as tT //i oc z~! proportional to the inverse
fugacity. Now, quantum critical scaling predicts that this form
continues from the dilute gas throughout the QCR until near
T.. This remarkable observation is supported by the fact that it
leads to good agreement with recent experimental data in the
regime where quantum critical scaling can be applied. It will
be interesting to see if our approach can be extended to other
types of QCPs.

While at unitarity the bosonic part of the exact sum
rule (25) provides only a regularization, away from unitarity
(1/a # 0) it gives a new regular contribution that arises from
local pair fluctuations, the so-called contact correlations [54].
This new contribution to thermal transport is not captured by
fermionic kinetic theory and is particularly important at low
temperatures near the superfluid phase transition.

We find that not only shear and spin diffusion, but also the
thermal diffusion D7 in units of /i/m exhibit quantum limited
diffusion near 7;. For thermal transport, the diffusion mini-
mum Dy =~ 4.2 i/m occurs well in the quantum critical region
at T ~ 0.7Tr (see Fig. 1). Hence, the quantum degenerate
unitary Fermi gas is a nearly perfect fluid not only regarding
momentum transport, but also for thermal transport.

With current sound propagation measurements in box traps
reaching into the superfluid regime [23,69], it will be par-
ticularly interesting to study critical scaling of the transport
coefficients and observe the increase of Dy shown in Fig. 1.
This, as well as the related monotonic decrease of the Prandtl
number indicated in Fig. 8, is due to the growing thermal
conductivity associated with the crossover to classical critical
fluctuations as expressed asymptotically in Eq. (2). For the
sound diffusion Dsouna(7") (Fig. 1) both our quantum critical
prediction and the experimental data indicate a monotonic
decrease, while at even lower temperatures 7 /T < 0.2 an
increase of Dsoung 1S again theoretically expected from critical
fluctuations. In the strongly interacting 2D Fermi gas, the
recently observed quantum scale anomaly [70] will have a
large effect on the transport coefficients.
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APPENDIX A: ENERGY CURRENT WARD IDENTITY

Following Polyakov [45], energy conservation leads to
the continuity equation 8, + V - jE = 0 between the energy
density operator (Hamiltonian) and the energy current opera-
tor defined in Eq. (16). The expectation values of this operator

equation together with two additional fermion operators then
lead to the Ward identity for the full energy current vertex [cf.

(22)]
q'7:7E(p78?qvw=0)
= G(r(pv S)Ga(p +q, 8)q . ,7:7E(pv &, q,w= O)

‘M)Ga(pﬂw)

:(8+M_ 2m

(s—i-u—i-u)G . €)

2m
0G,[h]
=gq- . Al
q on, (AD)

The amputated energy current vertex is then

q-'i;E(p,g,q’a):O)
_ <8+M_q-(p+q)>
2m

(8+M+ q2 p)G;I(p—i-q,a)

3G [h]
=—q —2 A2
q on, (A2)

G, (p.¢)

and by inserting the noninteracting Green’s functions
G,'(p,€) = & — ¢, + 11 one finds the matrix elements of the
bare energy current operator [cf. (17)]

p+q/2xp-(p+q)
m

2m

In the two-channel model formulated in terms of
both fermions and pairs, we have to introduce a new
bosonic Ward identity beyond the one given by Polyakov

[45]. We find for the full bosonic energy current vertex
[cf. (22)]

pd[r(Q Q qv w = 0)
=I1(Q, 2Q)I'Q +q,Q)q -

TEO(p,q) = jE(p.q) = (A3)

Tir(Q. 2.4, 0 =0)

(sz+2u+ "2—Q)F<Q+q, Q)

- (sz +ou- L (Q”))F(Q, 2)
2m
oI "
1 o,

The amputated bosonic energy current vertex is then given by

Q.2 q. 0 =0)
2 0)r10,9)

4@+
2m

<Q+2M+

—(2+2u- Jrl@+a.2)

ar~'Th]
=—q —. AS
q on, (AS)
When inserting the bare bosonic Green’s function I'y(Q, 2) =
&(A), one recovers the matrix elements of the bosonic energy
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current operator [cf. (17)]

0+q/2
mg(A)

In the limit @ = 0, ¢ — 0 the homogeneous Ward identities

and current operators result that are given in the main text:

T, ) = jhi(Q.9) = (A6)

96, (p.

TE@e) = =L Go(p ) + (6 + ) 2CrP8).
m ap

- aG-1 ,

T e) = L G (pe) — (e + py 2 28),
m ap

TEOpe =L,
m

arQ, Q
Toir(Q. Q) = n% [(Q, Q)+ (2 +2p) e

0
N ar-1Q, @
TE@ 2 =2r10 9 - @+2) 22
m a0
2 E(0) _ 9 1
7;air (Q’ Q) - m g(A)

APPENDIX B: UV ASYMPTOTICS OF
CORRELATION FUNCTIONS

The power-law tails typical for correlation functions in
the zero-range limit arise from interaction effects, which are
encoded in the fermionic self-energy X(p — oo, — 07)

J

G,(Q-p,(B—1)—> 0") ~ —ew”sﬂ[l + (B - r)(

and we obtain for the self-energy

X(p —> 00, T —> B7) x> e(’sf)al’[F(x =0, > B )+ (

= P70 [F(X =0,7—> B7)+ (

and in the pair propagator I'(Q — oo, T — 07). In order to
formulate the Luttinger-Ward theory, it is more convenient
to make use of the (anti)periodicity of (fermionic) bosonic
correlation functions in imaginary time and to consider the
limit T — B~ instead of T — 0~. Within the self-consistent
T-matrix approximation for the Luttinger-Ward grand po-
tential the self-energy of unpolarized fermions is given by
(henceforth i = 1)

d30
E(ny)=—/WF(Q,T)G(Q—P,ﬂ—f)- (B1)

In the limit of large momenta, both the Green’s and the vertex
functions approach their vacuum forms [71]

&p

Gp—> 00,7) > Gy(p, ) = —e %,

4ﬁ e*‘[&Q/Z
2T '

Moreover, in the vacuum limit all diagrams vanish except
for the particle-particle ladders which represent the exact T
matrix for two-particle scattering in quantum mechanics.
Therefore, the Luttinger-Ward approach includes the
correct exponents of the momentum tails. For 7 — g~
and p — oo we retain only the dominant contributions to the
momentum integral which arise from the regions |Q| < |p|
and |Q — p| < |p|. This allows one to expand the Green’s
function in the form

rQ — oo, 7) > ry(Q,7) ~ — (B2)

Qp (B—1)*(Q-p)*

7‘8@)*7 o +} ®3)
4B — 1) d’ -
%ep —(B- r)) ﬁSQF(Q, Ny )],

_ )2 2
WT”@, —(B- r)) (—Z—m)m, T ,3_)x=0]- (B4)

Here, we have assumed that the momentum integral of the pair propagator is finite, which we show below in Eq. (B12). From

our Luttinger-Ward data we find the behavior

I(x—= 0,7 )=C/m*+T1(B—1)+T3pB—1)?+Tpx* +--, (B5)

where I'y 3,5 ,» denote new coefficients while the leading order is determined by the Tan contact C according to Eq. (13). The
anomalous power (8 — 7)3/? is generated by the self-consistent iteration but unbiased by the necessary analytic subtractions [34]
which consider only contributions to the limit T — 0. This result implies for the self-energy

E(p—> 00,7 p7) > —e P [c +Ti(B—1)+T3p(B—1)* - %[4(;8 — 1), —3(8 — r)]],

C/m2 F1+%sz

8
El_‘xzep

RIVE BY)

2(p —> 00, €,) > + —

i€, +e, (i€, + &p)?

(i€n + €,)°

. B6
A(ie, + &p)3/? (B6)

Here, the second line is obtained from the first one by Fourier transform to Matsubara frequencies. Using the Dyson equation
G! p, &) =Gy ! (p, €x) — (P, €,) one can determine the asymptotic power laws of the momentum distribution

n(p — 00) = —

B

which is indeed of the form (29) stated in the main text.

(ien - gp)z

IZE(p—>oo,e,,)_£

F] - %sz 15\/27TF3/2
- 3 72 (B7)
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We turn now to the UV behavior of the pair propagator
I'Q — oo, 7 — B7). In the ladder approximation it can be
expressed via the Bethe-Salpeter equation

1
FQ @)= @

where M,,, denotes the renormalized particle-particle bubble

(B8)

d3

Myp(Q.7) = / 0P DGR -p. . (®9)
However, the cancellation of divergent terms in the zero-
range limit affects only the behavior T — 07 and needs
not to be taken further into account. Employing analogous
arguments that led from the convolution (B1) to the result
(B4) while using the asymptotic form [71] G(p — oo, T —
B~) — —(C/p*)exp[—¢,(B — )], we obtain the limiting be-
havior

nC
pr(Q, ) =M,,(Q— 00,7 p7)— Ee—sg(ﬂ—r)’

(B10)
where we have inserted the total density n = —2G(x =
0, 7). Transforming this to frequency space yields

nC 1
ME(Q Q)= ————, B11l
Q) = i e (B11)

which combines with the leading contribution in the vac-
uum limit M,,,(Q, 2, — 00) = —m*/? [eg — 2iK,,/(2°/*7)
to yield the pair momentum distribution (of dimension wave
number due to the anomalous dimension of the contact
operator)

6472 nC
3 Q¢

Npair(Q) = —m’T(Q, 7 — ) = + -+, (BI2)

APPENDIX C: VARIATIONAL KINETIC THEORY

In this Appendix we explain how to evaluate the variational
bound on the transport scattering rate (33) in a larger basis
set. Specifically for the shear viscosity, X, = pxp,/m denotes
the shear perturbation and U, has the same quadrupole sym-
metry as X,, hence it differs from X, only by a spherically
symmetric function of p*. One can expand U, = > ciUi(p)
in orthogonal (but not necessarily normalized) basis functions
U; with (U;, U;j) = u;é;;. A particularly convenient choice is
setting U; (p) = X (p) and finding orthogonal U;, i > 1, by the
Gram-Schmidt method, which simplifies Eq. (33) to

1 . (U,HU)

‘ _{%gcﬁX}X)' €D
The collision integral is normalized by (X, X), which in the
case of the shear viscosity is proportional to the pressure of
the ideal Fermi gas, (X, X) = —A;>T? Lis»(—e?*). Denoting
the matrix elements of the positive linear operator H as H;; =
(Ui, HUj), the stationarity of 7! with respect to variations in
U requires 7 1801(X, X) = Zj Hijc;. The minimum princi-
ple for 7! then implies that each minimization within a finite
subspace of U;, for i =1, ... , M, provides an upper bound
on the true value of 7!, which can be successively improved
(lowered) by increasing M. Equivalently, this can be expressed

100

_____ Boltzmann 7,

—large-N medium 7

10f —— Luttinger-Ward 7, -
<
~
E‘ 3
|
0.1F
-4 -3 -2 -l 0 1 2

FIG. 9. Spin scattering times 7, from Boltzmann (dashed) and
large-N calculations (blue) coincide and agree well with Luttinger-
Ward results (red) in the quantum critical regime.

as a lower bound on the scattering time

> (H X, X), (C2)

in terms of the (1,1) element of the inverse matrix of H;;.
Results for the viscous scattering time 7, in the unitary Fermi
gas are shown in Fig. 5 in the main text. The surprising
observation for the viscous scattering time 7, at unitarity is
that it has nearly the same value both with a Boltzmann distri-
bution and with a Fermi-Dirac distribution, but only if a full
variational basis set beyond the first basis function U is used.

Analogously, a similar observation is made for the heat
conductivity with driving term X, = (g, — w)%. Again, we
choose a set of variational basis functions U;(p) = p*~1X,,
for i=1,...,M [34], and find that the thermal transport
scattering time converges rapidly already with the first three
basis functions, but differs markedly from the result with only
the first basis function Uj. Finally, also for spin diffusion we
compute the transport scattering time with more than one
basis function in the quantum degenerate regime. The spin
diffusivity Dy is defined via the Einstein relation in terms of

»
=

D, /D,
[\S)
N

----- Boltzmann
— Luttinger-Ward ]

g
=3

—_
9]

1.0f

0.5

Schmidt number Sc

0.0

FIG. 10. Schmidt number Sc = D, /D; in the quantum critical
regime, combining quantum critical scattering times from our large-

N calculation with the Luttinger-Ward equation of state. The dashed

line denotes the Boltzmann limit S¢c = %
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spin conductivity o, and spin susceptibility x; [20]:

s TS
p,=2 "% (C3)
X‘Y mXx

The spin scattering time t; shown in Fig. 9 also exhibits the
quantum critical scaling that we observed already for shear
and thermal transport: the medium scattering time is, within
our numerical resolution, identical to the Boltzmann scatter-
ing time 7,7 /h = %e’ﬂ“. The quantum critical scattering
time is now combined with the Luttinger-Ward equation of
state for density n and spin susceptibility x, to obtain the spin

diffusivity Dy;. Now, the Schmidt number [62]

Dy _ (p/mmty _ pXs Ty

Sc = = ==
Dy (n/mxs)Ts n Ts

(C4)
is defined as the dimensionless transport ratio of shear and
spin diffusion and characterizes the relative importance of
momentum and spin relaxation. As shown in Fig. 10, the
Schmidt number starts from a value of Sc = t,/7, = % in
the high-temperature limit and drops to around 0.3 near T,
indicating that momentum diffusion is suppressed by a factor
of almost 10 relative to spin diffusion. This is physically
expected because viscosity is carried both by single fermions
and pairs and therefore strongly affected by pair fluctuations
near T;, whereas pairs carry no spin current.
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