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We determine the thermodynamic properties and the spectral function for a homogeneous two-
dimensional Fermi gas in the normal state using the Luttinger-Ward, or self-consistent T-matrix, approach.
The density equation of state deviates strongly from that of the ideal Fermi gas even for moderate
interactions, and our calculations suggest that temperature has a pronounced effect on the pressure in the
crossover from weak to strong coupling, consistent with recent experiments. We also compute the
superfluid transition temperature for a finite system in the crossover region. There is a pronounced
pseudogap regime above the transition temperature: the spectral function shows a Bogoliubov-like
dispersion with backbending, and the density of states is significantly suppressed near the chemical
potential. The contact density at low temperatures increases with interaction and compares well with both
experiment and zero-temperature Monte Carlo results.
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The formation of fermion pairs and the superfluidity of
such pairs are distinct but related phenomena: in weak-
coupling BCS theory, both are predicted to occur at the
same temperature Tc. However, a basic question of many-
body physics is how they are related at stronger coupling
and in low dimensions, where quantum fluctuations play
a large role. While preformed pairs in the normal phase
trivially exist in the strong-coupling Bose limit where one
has tightly bound dimers, it has been argued that pairing
above Tc can also occur in the BCS regime. In this case,
one expects a significant suppression of spectral weight at
the Fermi surface even above Tc. This so-called pseudogap
regime extends up to a crossover temperature T� > Tc, and
its spectral and thermodynamic properties deviate strongly
from the predictions of Fermi-liquid theory [1]. Recently,
pairing and superfluidity have been studied in ultracold
atomic gases, which afford accurate control of both the
interaction strength and dimensionality, and allow access
to the crossover between the BCS and Bose regimes [2]. In
these systems, a pseudogap can be detected through the
suppression of the spin susceptibility or directly via the
spectral function, which is experimentally accessible by
angle-resolved photoemission spectroscopy or momentum-
resolved rf spectroscopy [3,4]. The possibility of a pseudogap
regime has already been investigated both experimentally
and theoretically in three dimensions (3D) [3,5].
In two-dimensional (2D) Fermi gases, the pseudogap

regime is expected to be much more pronounced than in 3D,
and a pairing gap has recently been observed experimentally
[4]. Here, we compute the spectral function for the homo-
geneous 2D Fermi gas in the normal phase of the BCS-Bose
crossover. Indeed, we find a strong suppression of the
density of states at the Fermi surface above Tc, as shown
in Fig. 1. This allows us to map the extent of the pseudogap

regime in the temperature-vs-coupling phase diagram
(Fig. 4), and we find that it extends further than in 3D [6].
As the binding between fermions increases, the Cooper

pairs evolve into a Bose gas of tightly bound molecules.
Long-range fluctuations in 2D are so strong that they inhibit
superfluid long-range order at nonzero temperature. Thus,
the 2D Bose gas exhibits a Berezinskii-Kosterlitz-Thouless
(BKT) transition at Tc > 0 into a quasiordered phase with
algebraically decaying correlations [7–9]. It is a challenging
many-body problem to precisely characterize the crossover
between the bosonic BKT and fermionic BCS limits, where
the composite nature of the molecules becomes apparent.
In this Letter,we present the first computation of the finite-

temperature density and pressure equation of state in the
crossover regime and find a strong renormalization already
for moderate interactions—see Fig. 2. The pressure at low
temperatures has very recently beenmeasured in experiment
[10]. We find that the pressure computed at T ≃ 0.1TF is
closer to the experimental data than zero-temperature
quantum Monte Carlo (QMC) calculations [11], offering
a resolution of previous discrepancies (Fig. 3). Furthermore,
we determine Tc for finite systems (Fig. 4), which is relevant
for experiments on quasi-2D atomic gases, in the crossover
regime between the known limiting cases [12]. Finally, the
contact density agrees well with experiment [13] and
shows surprisingly little variation with temperature (Fig. 5).
The dilute, two-component (↑, ↓) Fermi gas with short-

range interactions is described by the Hamiltonian

H ¼
X

kσ

ðεk − μÞc†kσckσ þ
g0
V

X

k;k0;q

c†k↑c
†
k0↓ck0þq↓ck−q↑;

where c†kσ creates a fermion with spin σ, momentum k,
and kinetic energy εk ¼ ℏ2k2=2m. The chemical potential
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μ is taken to be the same for both species in a spin-balanced
gas. The energy scale is set by the Fermi energy εF ¼
kBTF ¼ ℏ2k2F=2m for a total density n ¼ k2F=2π. The bare
attractive contact interaction g0 has to be regularized and
is expressed in terms of the physical binding energy εB of
the two-body bound state which is always present in an
attractive 2D Fermi gas. We define the 2D scattering length
as a2D ¼ ℏ=

ffiffiffiffiffiffiffiffiffi
mεB

p
and parametrize the interaction strength

by lnðkFa2DÞ ¼ lnð2εF=εBÞ=2. In the following, we set
kB ¼ 1, ℏ ¼ 1, and write β ¼ 1=kBT.
We investigate the behavior of the strongly interacting

Fermi gas in the normal state using the Luttinger-Ward, or
self-consistent T-matrix, approach [14,15], which goes
beyond earlier works [6,16] by including approximately
the interaction between dimers as well as dressed Green’s
functions. Thermodynamic precision measurements for the
unitary Fermi gas in 3D [17] have confirmed the accuracy
of this method, both for the value of Tc=TF ¼ 0.16ð1Þ and
the Bertsch parameter ξ ¼ 0.36ð1Þ [15,17]. Recently, the
Luttinger-Ward approach has been extended to study trans-
port properties [18]. The success of this method in three
dimensions encourages its application to the homogeneous
2D Fermi gas, which is particularly challenging due to the
logarithmic energy dependence of the scattering amplitude.
Within the Luttinger-Ward approach, pairs of dressed

fermions with Green’s function Gðk;ωÞ ¼ ½−ωþ εk − μ −
Σðk;ωÞ�−1 can form virtual molecules whose dynamics are
described by the T matrix ΓðK;ΩÞ. The fermions can scatter
from these molecules, which determines their lifetime and
self-energy Σðk;ωÞ (see Supplemental Material [19]). From
the self-consistent solution Gðk;ωÞ one obtains the spectral
function Aðk;ωÞ ¼ ImGðk;ωþ i0Þ=π.

Density of states.—The density of states ρðωÞ describes at
which energies fermionic quasiparticles can be excited, and is
computed as the momentum average of the spectral function,
ρðωÞ ¼ R

dkAðk;ωÞ=ð2πÞ2. Figure 1 shows the density of
states for an interaction strength of lnðkFa2DÞ ¼ 0.8, which
is weak enough that there should be a Fermi surface at low
temperatures [20]. For decreasing temperature, we see that
the density of states is strongly suppressed at the chemical
potential, while it increases on either side of the Fermi
surface. This marks the pseudogap regimewhich is part of the

FIG. 1 (color online). Density of states ρðωÞ, normalized by
ρ0 ¼ m=2π for the free Fermi gas, at interaction lnðkFa2DÞ ¼ 0.8
for different temperatures: T ¼ 0.45TF (top curve at ω ¼ 0) to
T ¼ 0.07TF (bottom). Inset: Spectral function Aðk;ωÞ for
T ¼ 0.07TF. The grey dashed line marks the maximum in the
spectral weight of the bottom band.

FIG. 2 (color online). Density n of the 2D Fermi gas vs chemical
potential βμ, for different interaction strengths βεB (see legend).
Since the density is normalized by n0ðβμÞ for the noninteracting
gas, the nonmonotonic behavior of n=n0 reflects the impact of
interactions, while the compressibility κ ¼ ð∂n=∂μÞ=n2 is always
positive. The inset shows a typical trajectory in T=TF vs lnðkFa2DÞ
corresponding to the dotted line of fixed βεB ¼ 1. Along this line,
βμ increases with decreasing T=TF.

FIG. 3 (color online). Pressure P vs interaction strength,
normalized by the pressure P0 ¼ nεF=2 of an ideal Fermi gas
of the same density at T ¼ 0. Luttinger-Ward data at temperature
T=TF ¼ 0.2 (top, dotted line) to T=TF ¼ 0.1 (solid line) in
comparison with experimental data [10] (symbols) and T ¼ 0
QMC results [11] (dashed line).
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normal phase, but with anomalous properties due to the lack
of low-energy fermionic excitations. There is no uniquely
defined temperature associated with this crossover, so for
concreteness we define the pseudogap temperature T� as the
temperature where the density of states at the chemical
potential drops by 25% of the value at the left fringe.
The full spectral function Aðk;ωÞ, shown in the inset of

Fig. 1 for a temperature of T=TF ¼ 0.07 slightly above Tc,
shows a BCS-like dispersion with a clear reduction of
spectral weight near the Fermi energy. While the upper
branch has a minimum at a finite wave vector k≃ kF, the
lower branch exhibits “backbending” towards lower energy
for large momenta (cf. Ref. [6]). We note that backbending
alone is not sufficient to define the pseudogap regime and can
also arise for other reasons in the occupied spectral function
[21]. The two-peak structure of the k ¼ 0 spectral function
qualitatively agrees with the momentum-resolved rf spectrum
measured at lnðkFa2DÞ ¼ 0.8 [4], which is the only meas-
urement that may lie within the pseudogap regime [20]. For
stronger attraction, the pseudogap regime eventually crosses
over into preformed fermion pairs, where the Fermi surface
is lost (μ < 0) and the spectral function resembles the one
predicted using the virial expansion [20,22].
Density equation of state.—The total density of both spin

components follows from the density of states as n ¼
2
R
∞
−∞ dεfðεÞρðεÞ, where fðεÞ is the Fermi distribution.

In Fig. 2, we plot the density equation of state nðβμ; βεBÞ as
a function of βμ for different values of the interaction
parameter βεB. This manner of plotting the equation of state
allows one to make a direct connection with experiments
in trapped gases, since the density vs chemical potential at
fixed βεB can be easily extracted from the measured density
profile in a trap [17]. To expose the effects of interactions,
we normalize the density n by that of the ideal Fermi
gas, n0 ¼ 2 lnð1þ eβμÞ=λ2T , where λT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π=mT
p

is the
thermal wavelength. In the high-temperature limit where

βμ → −∞, all properties approach those of an ideal
Boltzmann gas. However, with decreasing temperature,
we find that n=n0 eventually exhibits a maximum around
βμ≃ 0, implying that interactions are strongest at inter-
mediate temperatures. This is easily understood from the
fact that decreasing T=TF at fixed βεB results in an in-
creasing lnðkFa2DÞ, as shown in the inset of Fig. 2. Thus,
we likewise expect the system to approach a weakly
interacting gas in the low temperature regime. This behav-
ior is qualitatively different from that observed in 3D [17],
and is a direct consequence of the fact that one can have
a density-driven BCS-Bose crossover in 2D. The curves for
large βεB are shown up to the critical value μcðβεBÞ where
the system is expected to enter the BKT phase.
Pressure.—The pressure is obtained by integrating the

density according to the Gibbs-Duhem relation, PðμÞT;εB ¼R
μ
−∞ nðμ0Þdμ0. Figure 3 shows the Luttinger-Ward data for
finite temperatures T=TF ¼ 0.2 (top) to 0.1 (bottom): the
pressure decreases from the free Fermi pressure in the BCS
limit to the much lower pressure of a dilute Bose gas in the
BKT limit. This is a strong coupling effect beyond the
mean-field BCS prediction P ¼ P0 at T ¼ 0 [10,11]. As
the temperature is lowered, our data approach the T ¼ 0
QMC results [11] (dashed line). A recent measurement at low
temperatures T=TF ≃ 0.04…0.12 [10] (symbols) found a
deviation from the T ¼ 0 pressure in the BCS limit, attributed
to mesoscopic effects. We, however, find that the T=TF ≃ 0.1
pressure from the Luttinger-Ward calculation agrees well with
experiment in this regime, thus, suggesting that the discrep-
ancy is in large part due to the effect of temperature.
Phase diagram of the 2D Fermi gas.—The BKT transition

at a finite temperature Tc marks the onset of a nonzero
superfluid density ρs and algebraically decaying correlations
[7,8]. The jump in ρs=n at Tc is universal for a Bose
superfluid and becomes exponentially small of order Tc=TF
on the weak-coupling BCS side [23]. The transition

FIG. 4 (color online). Critical temperature Tc=TF vs interaction
strength lnðkFa2DÞ. The Luttinger-Ward result for a finite system
(blue solid line) in the crossover region lnðkFa2DÞ≳ 0 is compared
with analytical limits [12]. The red dots mark the crossover
temperature T� to the pseudogap regime for lnðkFa2DÞ≳ 1.

FIG. 5 (color online). Contact density C vs interaction
strength 1= lnðkFa2DÞ at temperature T=TF ¼ 0.27. We compare
our result (blue solid line) with the experimental data at
T=TF ¼ 0.27 [13] (red symbols), the weak-coupling result
(green dashed-dotted line), and QMC calculations at T ¼ 0
[11] (cyan dashed line).
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temperature is characterized by the Thouless criterion, where
the coefficient of the quadratic term in a Ginzburg-Landau
action for the pairing field changes sign. In practice, the
relevant question is when this transition occurs for a finite
system, for instance inside a trapping potential (see
Supplemental Material [19]). In our analysis, therefore,
we compute Tc for N ¼ 500 particles typical of current
experiments [10], as depicted in Fig. 4. We have checked
that different values for N lead to small quantitative but
not qualitative changes in the Tc curve.
In the weak-coupling BCS limit lnðkFa2DÞ≫1 [εB ≪ εF],

the mean-field transition temperature is given by Tc=TF ¼
ð2eγE=πÞ exp½− lnðkFa2DÞ� (dashed line in Fig. 4), where
γE ≈ 0.5772 is Euler’s constant [24]. Petrov et al, [12] have
included Gor’kov–Melik-Barkhudarov (GMB) correc-
tions and obtained a lower value Tc=TF ¼ ð2eγE=πeÞ×
exp½− lnðkFa2DÞ� (dashed-dotted line). On the BKT side
for strong binding εB ≫ εF, the Thouless criterion fixes
μc ¼ −εB=2 and the number equation determines Tc [25].
A more elaborate analysis using Monte Carlo data for the
weakly interacting Bose gas in 2D [8] yields a BKT tem-
perature of Tc=TF ≲ 0.12 for lnðkFa2DÞ < 0 [12], which
decreases for even stronger binding (left dashed curve in
Fig. 4). This limiting behavior implies the existence of a
maximum Tc in the crossover region (cf. Ref. [26]), but
does not determine its value or the precise crossover
behavior.
The Luttinger-Ward result for Tc grows monotonically

from the BCS limit towards strong coupling lnðkFa2DÞ ≈ 0:
it suggests a maximum Tc at negative lnðkFa2DÞ, which is
unlikely to exceed Tc=TF ≲ 0.1. This is consistent with
experiments which did not observe signatures of super-
fluidity down to T=TF ¼ 0.27 [4], but is considerably lower
than a recent calculation for a harmonically trapped gas [6].
The red dots in the phase diagram in Fig. 4 mark the

crossover temperature to the pseudogap regime T�, where
the density of states ρðωÞ at the chemical potential drops by
25% of the value at the left fringe. In the weak coupling
BCS limit, T� approaches Tc since pairing and condensa-
tion occur simultaneously, and both Tc and T� tend towards
the dashed weak-coupling result. The large pseudogap
regime at strong binding leads to clear signatures in the
spin susceptibility and spectral properties well within reach
of current experiments.
Contact density.—The contact density C [27] character-

izes the probability of finding particles of opposite spin
close to each other [28]. It determines the universal high-
energy properties of a quantum gas with contact interactions,
e.g., the momentum distribution function nk → C=k4 at
largemomenta. The contact density is related to the variation
of the pressure with scattering length by the adiabatic
theorem [20,29]

C ¼ −2πm
dP

d lna2D

����
μ;T;V

:

Using the weak-coupling expansion of the ground state
energy in x ¼ 1= lnðkFa2DÞ [30] one obtains at T ¼ 0:
C ¼ k4F½x2 − ð3=2 − 2 ln 2Þx3�=4. In the normal state, the
contact density corresponds to the total density of
dimers [31].
In Fig. 5, we show our result for the contact (solid line)

at T ¼ 0.27TF and compare with the experimental data at
the same temperature from Fröhlich et al. [13], as well as
with the weak-coupling estimate above. Remarkably, our
calculation in this low-temperature region is very close to
the T ¼ 0 QMC result [11] (dashed line), showing that
the contact has only a weak temperature dependence. Note,
further, that while one generally expects the contact to
decrease with increasing temperature, our result for larger
lnðkFa2DÞ is higher than the contact at T ¼ 0 from QMC
calculations, thus, suggesting that C is a nonmonotonic
function of T, similar to 3D [32].
In conclusion, we have presented results for the density

and pressure equation of state which shed light on a recent
pressure measurement [10]. The values for the transition
temperature Tc and the pseudogap crossover temperature
T� in the phase diagram reveal a large pseudogap regime;
its effect on the spectral function and low-energy density of
states are accessible and relevant for current experiments
using momentum-resolved rf spectroscopy [4]. We find that
the contact depends only weakly on temperature, providing a
robust interaction gauge. It will be worthwhile to extend the
Luttinger-Ward technique into the low-temperature BKT
phase, which is characterized by the binding of vortex-
antivortex pairs, and study the signatures of the superfluid
phase for a trapped 2D Fermi gas. The BKT transition itself
is revealed by a jump in the sound velocities [33].
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