arXiv:1810.11296v1 [cond-mat.quant-gas] 26 Oct 2018

Real space dynamics of attractive and repulsive polarons in Bose-Einstein condensates
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We investigate the formation of a Bose polaron when a single impurity in a Bose-Einstein con-
densate is quenched from a non-interacting to an attractively interacting state in the vicinity of a
Feshbach resonance. We use a beyond-Frohlich Hamiltonian that is able to cover both sides of the
resonance and the Lee-Low-Pines variational ansatz to compute the time-evolution of Boson density
profiles in position space. We find that on the repulsive side of the Feshbach resonance, the system
keeps oscillating with a characteristic frequency for which we derive an implicit equation and discuss
to what extent this can be interpreted as a competition between a molecular and a repulsive polaron
state. If the impurity is introduced at finite velocity, it is periodically slowed down or even arrested

before speeding up again.

I. INTRODUCTION

The polaron is a general concept of many-body physics
that naturally arises in different fields like solid state
physics and the theory of ultracold gases. While it has
long been used to describe electrons in a crystal lattice,
only recent experimental advances allowed one to realize
polarons in ultracold gases. Here, the Feshbach resonance
allows for a high level of control and in particular for re-
alizing the strong-coupling regime, which could not be
done before. This gives access to interesting phenomena
such as self-localization and bubble formation. Moreover,
the interaction can be changed abruptly which allows for
the investigation of the dynamics. Combined with the
possibility of direct imaging, this allows to view polaron
formation in position space, which is crucial for the phys-
ical intuition and interpretation of the time evolution.

The concept of polarons was originally invented by
Landau [I]. He showed that an electron in a crystal lat-
tice interacts with the surrounding atoms in such a way
that it can be described as a quasiparticle with a higher
effective mass, moving through free space. Describing the
lattice deformations induced by the electron as phonons,
the polaron can be imagined as an electron carrying a
cloud of phonons around it. A very similar picture arises
in ultracold bosonic gases: According to Bogoliubov the-
ory, the elementary excitations of a BEC are phonons as
well, so when an impurity is moving through the gas, the
situation is analogous to that of an electron in a crystal.
But in an ultracold gas, it is possible to tune the interac-
tion between the particles via a Feshbach resonance and
in particular to investigate the regime of strong coupling
between impurity and host bosons.

A number of different theoretical approaches has been
used to investigate different aspects of the Bose polaron.
In 1954, Frohlich introduced a Hamiltonian which is com-
monly used to study polarons [2]. It can be recovered
from Bogoliubov theory with one further approximation
[3]. This was first done for ultracold gases in [4], where
the ground state properties were studied using a vari-
ational ansatz due to Feynman [5]. This ansatz works
well for all couplings in the original case of electrons in
a lattice, but in the ultracold gas, the regularization of
the contact interaction leads to errors when the coupling

becomes strong. This was discussed in [0] with Diagram-
matic Monte Carlo calculations. These give access to the
ground-state properties and are computationally inten-
sive but numerically exact and provide valuable bench-
marks for other methods. A coherent-state variational
ansatz originally due to Lee, Low and Pines (LLP) [7]
has been used to study dynamical properties [8, [9]. It
neglects entanglement in momentum space and is consid-
ered best for heavy impurities and weak couplings. More
quantum fluctuations have been taken into account by
a renormalization group technique for the ground state
[10, 1] and the dynamics [I2] and by the correlated gaus-
sian wave function ansatz [13], as well as a Hartree-Fock-
Bogoliubov description [I4]. There are some more works
related to the Frohlich Hamiltonian [T5HI7]; for a review,
see [I8]. The Bose polaron exhibits characteristic signa-
tures also at finite temperature [19, 20].

The interaction term in the Frohlich Hamiltonian is,
however, just an approximation in the case of ultracold
gases and higher order terms become important in the
regime of strong coupling. This was first observed in
[21], where a T-matrix approximation was used. Sub-
sequently, both the LLP coherent state ansatz [9] and
the RG analysis [22] were applied to the fully interacting
model, and recently the functional determinant approach
[23]. In the one-dimensional case, some analytical results
for heavy impurities have been obtained [24] and phonon-
phonon interactions beyond Bogoliubov theory have been
considered [25].

Approaches not based on Bogoliubov theory are more
limited in number: Quantum Monte Carlo calculations
[26] provide exact ground states for a limited number of
parameters. Coupled Gross-Pitaevskii equations [27H29]
can describe the spatial deformation of the BEC and the
phenomena of self-localization and the bubble polaron
but work on a mean-field level. A variational approach
which treats the molecular state as an independent quasi-
particle has been used to investigate three-body bound
states [30 [31].

Experimentally, Bose polarons in ultracold gases have
been observed with a focus on absorption spectra and
decoherence [32H36] for which some theoretical predic-
tions have been made. Direct imaging experiments on the
other hand are still in preparation and there have been



few theoretical results concerning the real space dynam-
ics of the bose polaron: the Monte Carlo calculations in
[26] include density profiles but only statically for ground
states while the Gross-Pitaevskii method in [29] consid-
ered a repulsive interaction. This is different from an
attractive interaction with a positive scattering length in
that it does not feature a bound state.

In this paper, we investigate the dynamics of polaron
formation when an initially non-interacting impurity is
quenched to an attractively interacting state. This situa-
tion has been studied before to compute radio-frequency
absorption spectra [8, [9] and, on the attractive side of
the Feshbach resonance, polaron trajectories [12], as well
as pre-thermalization dynamics [37]. Here, we focus on
two new aspects: We compute the density profile of the
BEC around the impurity as a function of time and thus
view the formation of the polaron in position space. This
can be directly measured with current imaging technolo-
gies and corresponding experiments are in preparation.
On the other hand, we investigate the repulsive side of
the Feshbach resonance where the scattering length is
positive. Here, a two-body bound state exists and its
interplay with the polaron leads to new effects, in par-
ticular characteristic oscillations and a depletion of the
boson density in a halo around the impurity. These were
inaccessible to many previous works based on the Froh-
lich Hamiltonian, which depends only on the modulus
of the scattering length and cannot describe the bound
states. Our study, instead, uses the extended Hamilto-
nian including higher-order terms in the interaction, and
we employ the LLP coherent-state ansatz to compute the
dynamics.

The paper is organized as follows. In Sec.[[] we review
the construction of the Hamiltonian and the variational
ansatz starting from Bogoliubov theory and discuss the
stationary solution. Section [[TI] contains the results for
the time evolution after a quench: we start with the case
of an impurity initially at rest and compute boson density
profiles as well as the total number of bosons gathering
around the impurity. We then present a way to com-
pute characteristic oscillation frequencies in the repulsive
regime. Finally, we investigate the influence of a non-zero
initial velocity and compute polaron trajectories.

II. MODEL

Our starting point is the Hamiltonian of a single im-
purity in a bath of bosons
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where m; and mp are the masses of impurity and bosons,
Ppr and &y the impurity momentum and position opera-
tors and agr) the bosonic creation and annihilation oper-
ators. np(x) = alay is the boson density and Vgp and
Vi are the boson-boson and impurity-boson interaction
potentials. Our derivation follows Shchadilova et al. [9].

Since we are dealing with just one impurity, it is con-
venient to go to relative coordinates. This is achieved by
the canonical transformation exp (iS) where
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It is known as the Lee-Low-Pines (LLP) transformation
[7], see also [3]. Its effect on the operators is
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Note that formally p = pr, but we have dropped the in-
dex after the transformation since the physical meaning
is not the impurity but the total momentum. It is, of
course, conserved and can be replaced by the initial im-
purity momentum pg such that the transformed Hamil-

tonian reads
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This transformation has simplified the interaction term
and replaced the impurity momentum by the difference of
total momentum and phonon momentum. Here, fourth-
order terms in the phonon operators appear unless the
impurity is taken to be infinitely heavy, i.e., stationary.
A delocalized impurity thus induces effective interactions
between the phonons.

Bogoliubov Theory

We use Bogoliubov theory which pre-supposes Bose-
Einstein-Condensation in the & = 0 mode and ap-
proximates the low-temperature behaviour by discard-
ing terms in 3rd and 4th order of boson operators with
k # 0. The resulting bosonic part of the Hamilto-
nian is diagonalized by the Bogoliubov transformation
b; = cosh (¢x) a,t — sinh (pr) a—g with exp (4der) =
€%k?/(2 + £€2k?) and the healing length
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Up to a constant energy offset,
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app and ayp are the scattering lengths of the poten-
tials Vgp and Vip. Finally, ng is the condensate den-

sity, which is a free parameter in Bogoliubov theory. 3’
means that the sum runs over k # 0.

Contact interaction

In a dilute ultracold gas, the range of interactions is
small compared to all other length scales. The effect
of the interaction can therefore be described by a single
number, the scattering length, while the precise shape of
the potential does not matter and can be chosen arbitrar-
ily. The most convenient choice is a zero-range pseudopo-
tential. Taken literally, the Fourier transform of a delta
potential would correspond to a potential in momentum
space that is constant over an unbounded region, which
does not make sense. Instead, one constructs it as a scal-
ing limit, first cutting off all momentum sums at some
large A, and then tuning the interaction strength in the
limit A — oo such that the scattering length remains
fixed at the desired value. The correctly regularized in-
teraction strength is then given by

/d3w Vi (x)np (z) = 9173 Za,taq. (1)
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But one must carefully note that a 3d delta distribution
in real space is not the proper choice as it would not
lead to a well-defined scattering length. In momentum
space, this translates to the fact that when the potential
is taken constant over an infinite region, it has to be
multiplied by a properly chosen infinitesimal prefactor to
yield the desired scattering length. Practically, this is
done by cutting off all momentum sums at some large
value A. The correctly regularized interaction strength
is then given by

A
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with myeq being the reduced mass of impurity and
bosons, Myeq = mI_1 +m§1. Note that such a cutoff effec-
tively corresponds to an interaction with a non-zero range
of order 1/A. The cutoff A will be used implicitly in all
sums and integrals throughout the paper. Also note that

instead of a “hard” cutoff, one can also multiply the in-
tegrands by a decaying function such as exp (—2k?/A?).
This leads to smoother results when the cutoff is not large
enough for perfectly converged behaviour.

In eq. , we still have to express the boson operators
ag by phonon operators bg. The result is
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where Wy, = exp (pr). Here, Ny = ngV is the number of
condensed bosons and we have approximated (0] N |0) ~
Ny, i.e. neglected the ground state depletion, which gives
a constant density shift [38] & (0] N|0)—ng = ‘2/32 3w
0.01673.

Inserting into Hpog, We obtain the final Hamilto-
nian
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The first two lines of correspond to a Frohlich
Hamiltonian, which is often used to study polarons. It
has also been used for polarons in ultracold gases, even
though for such systems the quadratic terms in the last
two lines of eq. are present. The so obtained results
are still valid as long as the coupling between impurity
and host atoms is sufficiently weak. One needs to take
care however, that when using the Frohlich Hamiltonian,
the regularized contact interaction g;p may not be used
and needs to be replaced by the result from the Born ap-
proximation gf & = 2marp/Myeq. Near the Feshbach reso-
nance, the quadratic terms become important as pointed
out in [9] 21].

Coherent state ansatz

Also by Lee, Low and Pines [7], a variational ansatz for
the Frohlich model was suggested, which approximates
the ground state by a coherent state. In the limit of in-
finitely heavy impurities, this ansatz becomes exact. In



[8], a time dependent version of this ansatz has been ap-
plied to the Bose polaron described by a Frohlich Hamil-
tonian. Subsequently, the same time-dependent ansatz
has been applied to the full Hamiltonian (3)) in [9].
Specifically, one considers wave functions of the form

a@»exp(y%fé;/adﬂbLlL&>|®

and projects the Schrédinger equation onto the subman-
ifold spanned by these functions. Equivalent to this pro-
jection is the minimization of the functional
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with respect to the ay. Setting up the Euler-Lagrange
equations [1| 2£ 0 0L
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The initial value ag(0) = 0, i.e., |a(0)) = |0), corresponds
to the situation of a quench.

If the impurity is initially at rest, po = 0, then prla] =
0 for all times due to spherical symmetry. In this case,
the equation becomes R-linear and can be written in the
form

Reag ) 0 H®) [Re (ou — a,(:)) 5)
Im & —H® 0 Im (ak — a,(f))
with a constant offset a(®) (the stationary solution, see
below).
Our results are based on solving numerically with
Verner’s 8th-order Runge-Kutta scheme [39], using the
julia language [40] and the DifferentialEquations.jl pack-

age [4I]. In the pg = 0 case, we also diagonalize the
matrix in for comparison.
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Figure 1. The three regimes of the coherent state ansatz,

exhibiting an attractive, unstable or repulsive polaron, sepa-
rated by the curves a”! and a_j_l.

Stationary solution

Before turning to the dynamical solutions, it is in-
structive to look at the stationary solution obtained from

ag = 0 or equivalently %jﬂw = 0. One finds

Wi
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where C and py are determined by the implicit equations
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Note that these quantities are UV convergent: For large

k, one has W2 = 1+ 0O(k~2) and Q, = 2751?9(1 +O(1). The
integrand is thus Q%c + sf;;; + O(k=%). The first term
k

cancels with the divergence of g;é, the second vanishes by
antisymmetry. The momentum integrand is Q% +0O(k=%)
and again, the first term is antisymmetric.

The integrals exist if and only if p;/m; < ¢, i.e., the
stationary impurity velocity must always be below the
speed of sound ¢ = 1/4/2mpg€. For too large initial mo-
menta, no stationary solution exists (the same is true
in the Frohlich model where Cy = 2warp/no/Mred is a
constant, see [§]).

In the special case pg = 0, one obtains pr = 0,
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and the stationary energy
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Figure 2. Time series of density profiles of the bosonic bath. r is the distance from the impurity. The densities are relative to
the phonon vacuum state |0). The last row shows the long-time asymptotics as well as the stationary solution @ (black dotted
line). In the repulsive case, the system keeps oscillating between the two limit curves that are shown. Calculations were carried
out at a gas parameter of noalsz = 107°, equal masses of bosons and impurity mpz = m; and with the impurity initially at

rest, po = 0. A soft momentum cutoff e~ 287 /A% With A = 80¢! was used.

Here, a4 is one of two critical scattering lengths defined

by
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which satisfy a— < 0 < a4. They were found in [22] and
delimit three regions of different stability of the station-
ary solution. This will be reflected in the convergence
behaviour of observables in our dynamical analysis:

—1 —1. . . . o .
1. a;p < aZ": The stationary point is a minimum,

observables converge. This is the region where the

. a <ajg <ayg:

attractive Bose polaron is expected to form.

-t . . The stationary point behaves

like a saddle point, the system is dynamically un-
stable. This is well understood as coming from
phase fluctuations growing without bounds [22].
This behaviour seems unphysical and means that
the approach cannot cover very strong couplings,
because one of the two approximations involved
fails: The Bogoliubov approximation, which ne-
glects interactions between phonons, or the coher-
ent state ansatz, which does not include all quan-



tum fluctuations.

3. a;l < a;é: The stationary point behaves like a
maximum, observables are oscillating. In this re-
gion, the stationary solution is usually interpreted
as a repulsive polaron due to its positive energy,
while at negative energies, a molecular state is ex-
pected. We will discuss to what extent the system
can be described as oscillating between these two
states.

In Fig. [[]we show how the boundaries of the three regimes
change with the reduced mass. For the case of light im-
purities, myeq — 0, the unstable region grows. Here,
quantum fluctuations become especially important as the
impurity is delocalized. One may thus suspect that the
instability arises from the failure of the LLP ansatz to
describe these fluctuations correctly. However, even in
the case of an infinitely heavy impurity, mi.qa — mp,
then unstable region remains. This suggests that it is
rather the Bogoliubov approximation that fails to de-
scribe the strongly interacting region correctly. It must
be noted however, that even for m; — oo, the coherent
state ansatz is an approximation since we are not dealing
with the Frohlich but with the fully interacting Hamilto-
nian.

III. RESULTS
A. Time evolution of density profiles

Fourier transforming the numerical solution of (4)) back
to position space, we can compute the boson density at
distance r from the impurity. More precisely, since the
impurity is itself a quantum particle, the quantity to con-
sider is correlation function

(original frame)
(LLP frame)

Expressing the boson density by phonon operators and
applying the variational ansatz, n(x) takes the following
form in terms of the coefficients ap:

n(z) = (vno + Re.Z ! (aW) (:Jc))2

+ (Im 7~ (aW ) (2))” (7)

where ! f(z) = [ (gi’)“g e’*® f(k) denotes the transfor-
mation to position space.
Figure [2] shows the results for the three different

regimes:

1. Attractive regime: Bosons are gathering around
the impurity and the profile quickly converges to
form the attractive Bose polaron. The final shape
matches precisely that of the stationary solution.
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Figure 3. Stationary density profiles for a;}; > ajrl. The
point of minimum density is at the distance of the impurity-
boson scattering length arg. Parameters are as in Fig.
except that A = 6006 ™! (to ensure arp < A™' even for weak
coupling).

2. Unstable regime: The impurity keeps pulling in
more and more bosons. As mentioned before, this
unphysical behaviour reflects the failure of the Bo-
goliubov approximation when interactions are too
strong. Including phonon interactions, i.e., higher-
order terms in the bosonic operators ag, might pre-
vent this.

3. Repulsive regime: Close to the impurity, the boson
density is strongly increased but there is a halo of
reduced density around it. There is no convergence
to a ground state profile, but instead, the solution
keeps oscillating between two states of the coupled
system of impurity and surrounding condensate: At
some times, the bath is completely depleted at a
certain distance while at other times, there is still
about half the original density left.

Comparing these results with the quantum Monte Carlo
calculations of the ground state profile in [26], the re-
sults are qualitatively similar, even though quantita-
tively slightly different (our parameters correspond to
arp/app = —20.94, co and 20.94).

The complete depletion is a feature that is present even
in the stationary solution and for all scattering lengths
above a,: Since a(®) is real, the last term in vanishes
and one can always find an r so that the first term van-
ishes as well. The length scale on which the depletion
takes place is given by the scattering length, as shown
in Fig. 3] This is not surprising since this is the scale of
the two-body bound state. The return to the condensate
density then happens on the order of the healing length
(not shown in the figure).
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Figure 4. The total number of bosons as function of scattering length and time. (a) For three different couplings. (b) For a
range of couplings. For each time point up to tmaer = 60mp£2, a low-opacity point is drawn. Where many points are on top of
each other due to convergence or recurrence, this region becomes more opaque. Parameters are as in Fig. |2} except that in (b)

a momentum hard cutoff at A = 20 was used.

B. Boson Number

From the momentum space coefficients, we can com-
pute the total change in the number of bosons. This is
not zero because the Bogoliubov theory does not pre-
serve particle number. It can be seen as a measure of
how many particles the impurity attracts in total. The
formula is

ANp(t) = ()] D e [ () = (0] Yy [0)
k k
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Results are shown in Fig. [dh. The characteristics of the
three regimes - convergence, unbounded growth and os-
cillations - are clearly visible. Note that in the repulsive
case, the maxima of the boson number correspond to the
more extreme density profiles, i.e., those with full deple-
tion. Doing the same computations for many different
scattering lengths, we arrive at Fig. [@b. As the critical
scattering lengths a4 and a_ are approached from the
attractive or repulsive regime, the total boson number
grows rapidly as well as the time to convergence. In the
figure, this is indicated by the fact that in these areas, the
curves are still washed out, therefore not yet converged.

C. Oscillation Frequencies

In the case of an impurity initially at rest, the frequen-
cies of the oscillations in the repulsive regime can be pre-
dicted by making an ansatz for the long-time solution.
The coefficients C; and Cy from the differential equa-
tion show the same qualitative behaviour as the other
observables: convergence, divergence or oscillations, ac-

cording to the regime. We therefore make an asymptotic
ansatz

Cr=>Y Az
A

Cy = ZBAe/\t (8)
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where the coefficients A can take finitely many complex
values with Re A > 0. This covers all of the three cases:
convergence if only A = 0 is present, exponential growth
if a A > 0 exists and oscillations for imaginary A. The
case ReA < 0 would be interesting as well to describe
the speed of convergence, but the restriction to Re A > 0
will prove necessary for the calculation. Since C7 and Cy
are real, we must have Ay = A, and By = B, (the bar
denotes complex conjugation).

Our aim is to derive conditions on A to be able to pre-
dict the exponential growth rate or oscillation frequency
of the physical observables. We thus insert the ansatz
into the differential equation (4)) with pr[a] = 0 and find
the solution

ap(t) = spe Z bae™
A
with the coefficients

Wi A + iW, ' B
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and unknown sg, which depend on the full history of the
time evolution.

Re-inserting the expression for « into the definitions of
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Figure 5. Predictions for exponential growth rate Re A and
oscillation frequency Im A in the long-time limit for the un-
stable and repulsive regime. The oscillation frequency is well
approximated by 1/2mreda§B, the energy of the two-body
bound state. As the small figures show, this remains true
for different mass ratios (note the difference in vertical scale).
Parameters are as in Fig. 2] with a hard momentum cutoff at
A = 100061,
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These equations should be regarded only as determin-
ing the solution asymptotically because the integrals over
e~ "%t will decay while no finite sum of exponentials e
with all Re A > 0 can ever be decaying. But since we are
interested in the long-time limit, we can ignore the os-
cillatory integrals. The need to drop these terms simply
reflects the fact that a system never exactly reaches its
asymptotic solution but only comes arbitrarily close.

We want to use the linear independence of e with
different A, but first, the Re and Im need to be expanded
as 2Re Y, bpae = 30, (bpae? + bpae) = >0, (br +
b,x)er and similarly for Im. We then find
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Recall that Ay and B) need not be real even though the
sums in @[) are. Also note that these equations would
not be true for Re A < 0 because the oscillating integrals
could not be ignored.

Using the expressions for by and the relations
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Written in this way, all integrals are UV convergent. Multiplying the last two equations finally leads to an equation

for A2, independent of Ay and Bjy:

(8 [ Grmmr) (&

In the above expressions, many of the integrals do in
fact not exist if A is purely imaginary since the integrands
have a pole at k& = k. in this case. What does exist,

P W2

2m)% Qi (QF + )\2)) =N (/ (62137:;3912641”\2)2- (10)

(

however, are the Cauchy principal value (PV) integrals

A k.—e A
'P/ ...=lim / +/ U
0 =0\ Jo kodte
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Figure 6. Time evolution of velocity and position of the impurity for one attractive and two repulsive scattering lengths. In
the velocity plots, the curves for vo = 1.0c and vo = 0.2c lie on top of each other. Parameters are as in Fig. ] with a soft cutoff
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Such integrals are not invariant under coordinate trans-
formations because the way in which the pole is ap-
proached is crucial, so it is not immediately clear how
to make sense of for negative A\2. This becomes
clearer if, instead of making an ansatz for an asymptotic
solution, one considers the time evolution operator in .
In fact, the product H® H® determines the dynamics
completely, so it is sufficient to compute its spectrum.
One obtains, once again, equation , where now A2
are the eigenvalues of H® HW_ But in the case \? < 0,
one finds that must hold with the integrals replaced
by PV integrals in any choice of coordinates, as long as
the same is used in all three integrals. Therefore, a co-
ordinate transformation will change the value of the in-
dividual integrals, but when it is applied to all of them,
the equation must stay true.

Solving numerically for different parameters, we
find that it has

1. no solution in the attractive regime, so only A =0
is possible here;

2. one solution for positive real A? in the unstable
regime;

3. one solution for negative real A\? in the repulsive
regime.

Using PV integrals in a particular choice of coordinates,
one may find an additional negative real solution in cases
2 and 3, but they are not valid because they change when
different coordinates are used.

The correct values, on the other hand, give predictions
of the exponential growth rate or frequency, respectively,
which are in perfect agreement with the simulations.

Figure [5] shows A over a range of different scattering
lengths. The oscillatory behaviour in the observables is
reminiscent of oscillations between two quantum states
with a frequency corresponding to their energy differ-
ence. Here, Im A is very well matched by the energy of
the two-body bound state, 1/2meqa?y. For weak in-
teractions, this is also the energy difference between the
repulsive polaron and the molecular state since the for-
mer approaches zero. To describe the repulsive polaron
at stronger coupling, we consider a variational state pro-
posed in [9] where a single phonon is added to the sta-
tionary solution }1/)(5)>, ie, Yy 'ykbL ‘1/)(5)>. We find that
it has an energy very close to E(*) — 1/2myeqa? . This
suggests that the additional particle does indeed form a
molecule with the impurity and that neither the interac-
tion with the other phonons nor the difference between
a phonon and a boson plays a big role. We thus be-
lieve that the oscillations occur between two quantum
states, one of which we interpret as the repulsive polaron
state and the other one as an interacting molecular state.
Note, however, that such an effective picture applies only
to observables that integrate over momentum space and
not to the full wave function itself because we discarded
the highly oscillatory terms in the coeflicients «.
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D. Moving Impurity

We now turn to the case where the impurity has an ini-
tial velocity vo = po/my. This case has been investigated
for the Frohlich Hamiltonian in [8] using the LLP vari-
ational ansatz and in [I2] with a time-dependent renor-
malization group method. In the latter reference, also
the full Hamiltonian was investigated on the attractive
side of the Feshbach resonance and it was argued that
in this case, the second order terms lead only to a shift
of the inverse scattering length. On the repulsive side,
this is not true since the Frohlich Hamiltonian cannot
describe molecule formation.

In Fig. [] we show the time evolution of the impu-

1 3k 2 .
o (2ﬂ)3k|ak\ and posi-

tion xy(t) = fg vr(t')dt’ (according to Ehrenfest’s theo-
rem). In the attractive regime, the behaviour is simple:
If the total momentum is not too high, it converges to
a non-zero final value, which agrees with the stationary
solution. This matches the picture of a polaron with
an increased effective mass. If the total momentum is
too large such that no stationary solution exists, the ve-
locity converges to the speed of sound. Note, however,
that close to the resonance, it has been predicted that
quantum fluctuations beyond the LLP ansatz lead to an
enhanced damping or even recoil effects, cf. [12].

On the repulsive side, the behaviour is different: the
velocity is oscillating with the same frequency as the den-
sity profile and boson number. We imagine this as being
due to the fact that the bound state has a different effec-
tive mass from the polaron state such that oscillations are
visible in the velocity. The effect is most striking close to
the critical scattering length a;lz Here the impurity ve-
locity quickly reaches zero but has periodic revivals. This
is in accordance with the fact that the polaron state has
a very high effective mass in contrast to the bound state.

On both sides of the resonance, the initial velocity does
not matter much as long as it is below or close to the
speed of sound: it leads only to a rescaling of the veloc-
ity at later times. This is also reflected in the density
profiles (Fig. @, which are still symmetric around the
impurity. Above the speed of sound, however, the num-
ber of attracted bosons is increased, leading to a faster
decay of the velocity. The density profiles now become
asymmetric with some depletion in front of the impurity.

rity velocity vr(t) = vo —

IV. DISCUSSION

We investigated the dynamics of polaron formation in
a BEC after a quench, focussing on real space density
profiles and the behaviour for positive scattering lengths.
These could not be investigated in previous works that
used the Frohlich Hamiltonian.

We found that three regions of qualitatively different
behaviour exist, where the strong-coupling region is un-
stable, as expected from the stationary analysis in [22].
The fact that the instability persists even in the limit of



heavy impurities is a hint that Bogoliubov theory is not
adequate to investigate the strong-coupling regime: the
deformation of the BEC is too important for the Bogoli-
ubov approximation to hold.

For positive scattering lengths, oscillations can be ob-
served in the expectation values of many observables and
we presented a way to compute their frequency. It is well
approximated by 1/2myeqa?p, which is the energy of the
two-body bound state. We thus expect that the system
can be effectively described as oscillating between two
quantum states, one of which might have an interpreta-
tion as a repulsive polaron and the other one as a bound
state. This can be an interesting topic for future work.
The challenge here is in particular to find two suitable
extremal states and a physical interpretation for them.

Remarkably, these oscillations are present even in the
impurity velocity, leading to striking “stop-and-go” po-
laron trajectories. The effect is most pronounced for
strong coupling when oscillations are slow compared to
the velocity relaxation: Here the position is advanced in
steps. It will be interesting to see if this can be observed
in experiments.

In position space, the positive scattering length leads
to a halo of reduced condensate density around the im-
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purity, whose size corresponds to a scattering length and
is independent of the mass. This is a version of a bubble
polaron, where the impurity has, however, still a core of
increased density around it and the profile oscillates in
intensity. At certain times, the depletion is even perfect,
which was not visible in ground state calculations.

It will be interesting for future work to investigate how
the system behaves for strong coupling where the coher-
ent state ansatz becomes unstable. However, suitable
techniques still have to be developed. Within Bogoliubov
theory, the so-called correlated gaussian wave functions
are a promising way since they should become exact in
the limit of heavy impurities. On the other hand, it will
be important to find out in which region Bogoliubov the-
ory is not reliable any more and how the system can be
described in this region.
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