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The study of the Berezinskii-Kosterlitz-Thouless transition in two-dimensional |ϕ|4 models can be performed
in several representations, and the amplitude-phase (AP) Madelung parametrization is a natural way to study the
contribution of density fluctuations to nonuniversal quantities. We introduce a functional renormalization group
scheme in AP representation where amplitude fluctuations are integrated first to yield an effective sine-Gordon
model with renormalized superfluid stiffness. By a mapping between the lattice XY and continuum |ϕ|4 models,
our method applies to both on equal footing. Our approach correctly reproduces the existence of a line of fixed
points and of universal thermodynamics and it allows to estimate universal and nonuniversal quantities of the two
models, finding good agreement with available Monte Carlo results. The presented approach is flexible enough
to treat parameter ranges of experimental relevance.
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I. INTRODUCTION

The study of topological phase transitions plays a major role
in modern physics, both for the importance of having nonlocal
order parameters in absence of conventional spontaneous
symmetry breaking and for their occurrence in a wide variety
of low-dimensional systems, including superfluid [1] and
superconducting films [2], two-dimensional (2D) supercon-
ducting arrays [3–5], granular superconductors [6], 2D cold-
atomic systems [7–9], and one-dimensional (1D) quantum
models [10].

The standard understanding of the main properties of phase
transitions in 2D interacting systems is based on the role of
topological defects [11] as relevant excitations of these models.
In 2D systems with continuous symmetry the unbinding of
vortex excitations drives the system out of the superfluid state
above a finite critical temperature TBKT. The mechanism for
this topological phase transition in 2D with continuous symme-
try, in which there is no local order parameter according to the
Mermin-Wagner (MW) theorem [12,13], was first explained
by Berezinskii, Kosterlitz, and Thouless (BKT) [14–16]
and leads to the paradigm of the BKT critical behavior [17].

The importance of the BKT mechanism can hardly be
overestimated. On the one hand, it explained 2D superfluidity
at finite temperature despite the lack of off-diagonal long-range
order [18], which manifests itself in the absence of magneti-
zation in 2D magnetic models such as the XY model [12] and
in a vanishing condensate fraction at finite temperature in 2D
bosonic models [19]. Nevertheless, because of the power-law
decay of correlation functions in the low-temperature phase
[14], one can still have superfluid/superconducting behavior
[20]. The physical consequences have been studied in very
different 2D systems, with applications ranging from soft
matter [11] and magnetic systems [21] to layered and high-
Tc superconductors [22], where the strong anisotropy [23]
may induce BKT behavior [22,24]; for an overview of the
relevant literature, we refer the reader to the recent review

[17]. At the same time, despite extensive work the effects
of disorder, spatial anisotropy, and more complex or long-
range interactions in real systems require the development of
advanced theoretical tools to extend our understanding of BKT
topological phase transitions to these cases.

On the other hand, 1D quantum systems at zero temperature
can be mapped via the quantum-to-classical correspondence
to 2D classical models at finite temperature and share the
same universal properties. This motivated extensive study
of BKT properties in (1 + 1)-dimensional models and field
theories, in particular, the sine-Gordon (SG) model [25,26].
The XY model can be linked to SG theory in two steps: first,
the Villain approximation [27] to the XY model preserves
the periodicity of the phase variable but approximates the
cosine angular dependence with a harmonic one, and can be
mapped exactly onto the 2D Coulomb gas [28–30]. It was
shown rigorously [31] that both the Coulomb gas and the
Villain model exhibit a BKT transition. In a second step, by
neglecting irrelevant higher vorticities/charges, the Coulomb
gas is mapped onto the (single-frequency) SG model, which
also exhibits a BKT transition [25,32,33]. In the Villain model,
vortex and spin-wave degrees of freedom are decoupled, unlike
in the XY model [34]. Note that in general a strong spin-vortex
coupling can destroy the BKT transition.

The BKT scenario clearly applies when one can define
local phases and explicitly detect and study vortices, such as
in the 2D XY model on a lattice, but it also applies in cases
where it is difficult to define the phase or detect vortices. In all
cases, the BKT transition separates a low-temperature phase
with power-law decaying correlations from a high-temperature
phase with exponentially decaying correlations, without an
explicit need to monitor vortex configurations [7]. Even then,
one cannot disregard the periodic (compact) nature of the phase
variables, which is necessary to obtain the BKT transition and
is correctly taken into account in the SG model. The subtlety
of the compactness of the phase is the reason why the results
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from the SG and |ϕ|4 models are not easily related: the SG
model provides an excellent description of the RG flow near
the critical point and is the natural formalism to include the
compact phase, but the inclusion of fluctuations apart from
vortices is not straightforward. In contrast, within the O(2)
symmetric |ϕ|4 theory one readily incorporates amplitude
fluctuations, but it is difficult to access the properties related to
the periodicity of the phase and to recover the BKT transition
in the thermodynamic limit (see below).

In this work, we discuss the role of the phase variable in
|ϕ|4 theory and show that the amplitude-phase (AP) Madelung
representation of the field ϕ = √

ρ eiθ leads to a consistent
and efficient treatment combining the advantages of the SG
and |ϕ|4 approaches. With this tool we can treat on equal
footing both the XY lattice model, where amplitude is fixed by
construction, and the |ϕ|4 model, for which we show without
a priori assumptions that amplitude (density) fluctuations are
gapped at the critical point, at least at leading order in the
truncation. For this purpose, we employ an exact mapping from
the XY model to an appropriate |ϕ|4 theory. Our approach with
a periodic phase variable recovers the universal properties of
the BKT transition including the line of fixed points, essential
scaling of the correlation length exponent, and the equation
of state in the fluctuation regime; this would be lost without
phase periodicity. More importantly, we can also study the
contribution of amplitude and longitudinal spin fluctuations to
nonuniversal quantities such as the critical temperature, which
is useful for BKT studies of 2D superconductors [35,36] and
other materials.

We perform our study in the framework of the functional
renormalization group (FRG), which generalizes the idea of
Wilson renormalization to the full functional form of the
Landau-Ginzburg free energy. Since its introduction [37], FRG
has been able to recover and expand most of the traditional RG
results and provides a systematic approach for the investigation
of high-energy [38], condensed matter [39–41], and statistical
physics [42]. An advantage of FRG is particularly evident
when considering the universal critical exponents of O(N )
field theories as a function of the spatial dimension d and the
field component number N . The FRG approach combined with
lowest-order derivative expansion [43] gives numerical results
for the anomalous dimension η and correlation length exponent
ν, which reproduce the expected behavior in the limiting cases
N → ∞, d → 4, and d → 2 [44,45]; also, O(N ) models with
long-range interaction have been studied [46,47].

Since several works already addressed the BKT transition
using FRG [48–54], we think it is useful to explain here
in detail our motivation to study 2D systems in an FRG
framework using the AP parametrization. FRG reproduces
for d → 2 the exact behavior required by the MW theorem.
Indeed, it is possible to recover the MW theorem already at
the lowest order of the derivative expansion, i.e., in the local
potential approximation (LPA) [55]. The compatibility of FRG
results with the MW theorem also leads in the N > 2 case to
an exact agreement of numerical critical exponents with the
lowest order 4 − ε [56] and 2 + ε̃ expansion [57] for the O(N )
nonlinear σ models. Furthermore, for the anomalous dimen-
sion η in general d one finds η → 0 for d > 2 and N � 2 in
the limit d → 2 [44,45]. However, in the BKT case d = 2 and
N = 2, the application of FRG is much less straightforward.

The field-theoretical and FRG approaches to the d = 2,
N = 2 case in general use a two-component, complex |ϕ|4
theory in the continuum. The field ϕ entering the partition
function can be parametrized in the following ways:

(i) the field and its complex conjugate ϕ and ϕ∗;
(ii) the real and imaginary parts of ϕ, i.e., Re ϕ and Im ϕ;
(iii) the amplitude ρ and phase θ of the field ϕ = √

ρ eiθ .
In the paper [48] the |ϕ|4 model in d = 2 is studied

within FRG by the derivative expansion formalism using the
parametrization (i), where the phase periodicity is implicitly
implemented. Proceeding in this way, one can show that there
is a line of (pseudo)fixed points, which is a hallmark of BKT,
and η can be estimated in good agreement with the BKT
prediction, even though it is not possible to unambiguously
locate the critical point. Indeed, in order to locate the critical
point it is necessary to terminate the FRG flow at a finite scale,
corresponding to a reasonable (but arbitrary) size of the system,
as also used in [50]. The β function for the interaction coupling
λ obtained in this FRG scheme agrees with the one of the
nonlinear σ model only at first order in the temperature T . This
discrepancy leads to a rather different behavior: in the loop
expansion of the nonlinear σ model the flow of the interaction
λ is trivial since all loop contributions vanish, and the model re-
mains always in its low-temperature phase. On the other hand,
the FRG treatment [48] gives a nontrivial flow for the λ cou-
pling with a line of pseudofixed points appearing at low tem-
perature and a high-temperature phase where the system renor-
malizes to a symmetric state with λ → 0; this is interpreted
as a hint of BKT behavior. However, the low-temperature
pseudofixed points in the FRG flow are unstable and the system
is always driven to the high-temperature state in the thermody-
namic limit, in contradiction to the BKT picture. This instabil-
ity remains also in FRG with higher-order truncations [49,54].

Parametrization (ii) [53,54] has the advantage that the
transverse mode (Im ϕ) alone reproduces the BKT scenario,
if one disregards the massive longitudinal (Re ϕ) mode.
However, in view of more complex cases in which the existence
of the BKT transition is not a priori known, it is important to
study also the effect of the massive longitudinal mode [in which
case the flow equations derived in parametrization (ii) become
equivalent to (i)]. It turns out that the interplay of massless
transverse modes with the massive longitudinal mode makes
the line of fixed points unstable and drives the RG flow to the
high-temperature phase for all initial conditions [54]. Instead,
with a temperature-dependent regulator that is optimized (fine
tuned) for each initial condition of the RG flow, a line of true
fixed points is found with very good results for the anomalous
dimension and the jump of the stiffness at TBKT [53].

In this paper, we argue that FRG in the AP parametrization
(iii) overcomes possible ambiguities in the other parametriza-
tions and achieves two goals: first, it recovers the BKT transi-
tion in the XY and |ϕ|4 models without any ad hoc assumption
on its existence and validity; and second, it quantifies the
effect of amplitude fluctuations on the superfluid stiffness and
nonuniversal properties of both models. The paper is structured
as follows: Sec. II defines the models and recapitulates
previous FRG results; Sec. III explains the mapping from
the lattice XY model to the continuum |ϕ|4 model so that
we can treat both on equal footing. Section IV introduces
our FRG approach, which proceeds in two stages: first, we
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formulate the FRG in the AP parametrization to integrate over
amplitude and longitudinal phase fluctuations; at the end of
this flow we obtain an effective SG model with a renormalized
superfluid stiffness. Subsequently, transverse phase (vortex)
excitations in the SG model with compact phase drive the
BKT transition and yield a line of true fixed points. In Sec. V
we present our results for the |ϕ|4 model, where we recover
the universality of thermodynamic functions in the fluctuation
regime [58–64], as well as for the XY model where we discuss
the temperature-dependent renormalization of the superfluid
stiffness. Finally, our concluding remarks are in Sec. VI.

II. THE MODELS AND DISCUSSION
OF PREVIOUS FRG RESULTS

In this section we introduce the XY and |ϕ|4 models studied
in this work and recapitulate basic properties of the BKT
phase transition. We then discuss previous FRG work before
presenting our results in Secs. IV and V.

A. XY and |ϕ|4 models in 2D

The Hamiltonian of the XY or plane rotor model reads as

βHXY = −K
∑
〈ij〉

[cos(θi − θj ) − 1], (1)

where K = βJ > 0 denotes the spin coupling in units of
temperature and as usual β = 1/kBT . The angles θi are defined
at the sites i of a 2D lattice; in the following we consider
a square lattice. The ground state is fully magnetized with
all spins pointing in the same direction, θi = θ0 ∀ i, and is
infinitely degenerate. At any T > 0 symmetry breaking is
forbidden in 2D by the MW theorem. Nevertheless, finite
systems can have a nonzero magnetization, which is used to
detect the BKT transition [65]. In ultracold atomic gases the
counterpart of the magnetization is the k = 0 component of
the momentum distribution and the central peak of the atomic
density profile sharply decreases around TBKT [66].

The action for the |ϕ|4 model reads as

S[ϕ] =
∫

d2x

{
1

2m
∂μϕ∂μϕ∗ − μ|ϕ|2 + U

2
|ϕ|4

}
. (2)

Note that Eq. (2) has been written for a classical field ϕ, but
in the following it will be applied also to the interacting boson
case. There, μ would represent the chemical potential, U the
local interaction, and m the boson mass. In the following, we
will use unit mass m = 1 but restore it when convenient. We
shall use units in which h̄ = kB = 1.

Continuous O(N ) field theories, with the action (2) cor-
responding to N = 2, have been studied extensively and
provide important examples of the field-theoretical treatment
of phase transitions. The nonperturbative FRG has produced
a comprehensive picture of the universality classes of such
theories for every real dimension d and number of field
components N [44,45]. In Sec. III we discuss how to map
the lattice XY model (1) onto the continuum |ϕ|4 theory (2).

To fix the notation and state results used later, we briefly
recapitulate basic results of the BKT universality class [67]
referring to the XY model. A discussion of BKT theory in
the |ϕ|4 model can be found, e.g., in [62]. Within a spin-wave

analysis of the XY model (1), we can expand around the
symmetry-broken state for small phase displacements θi −
θj 	 1, which in the continuum limit leads to

βHsw = K

2

∫
(∇θ )2d2x. (3)

When the phase θ is treated as periodic, the latter model
is equivalent to the Villain model [27]. Neglecting the
compactness of phase variable θ , one readily finds

ML ∝
(

a

L

) 1
2πK

, G(x) ∝
(

aπ

x

) 1
2πK

, (4)

where ML is the magnetization of a finite system of size L and
lattice spacing a, and G(x) denotes the two-point correlation
function between two spins at distance x in the thermodynamic
limit (see Appendix A for a derivation).

The magnetization ML decays as a power law of the system
size, and in the thermodynamic limit the system has no finite
order parameter at finite temperature, in agreement with the
MW theorem. On the other hand, the two-point correlation
G(x) displays algebraic behavior with temperature-dependent
anomalous dimension

η(T ) = T

2πJ
. (5)

This result is generally valid also at higher order in the low-
temperature expansion of the system.

The spin-wave analysis suggests that the ordered phase is
stable at all temperatures and the correlation functions have
power-law behavior even for small K values. However, this is
inconsistent with an intuitive argument [15] based on the free
energy F = (πJ − 2T ) ln (L

a
) of a macroscopic vortex con-

figuration (see, e.g., [34]). Accordingly, vortex configurations
of the spin should become favorable for temperatures larger
than

TBKT ≈ πJ

2
. (6)

For T > TBKT, one expects vortex excitations to proliferate and
destroy the algebraic order found in the spin-wave analysis.
Monte Carlo simulations have established TBKT � 0.893J

[68–72]. A review of the critical properties of the Villain model
is provided in [73], and for comparison its critical temperature
is �1.330J [74].

The continuous field theory for the spin-wave approxima-
tion is, however, not suited to account for vortex configura-
tions, which are characterized by∮

C

∇θ · d 

 = 2πmi (7)

when integrating over a closed contour C. The single-valued
complex field ϕ allows for differences in the phase field θ by
multiples of 2π , and thereby imposes the condition mi ∈ Z
for the winding number of the vortex configurations. Instead,
the path-integral formulation with a single-valued field θ does
not include vortex configurations.

It is possible to take exact account of the vortex configura-
tions by means of a dual transformation [28]. One can extract
the contribution from the multivalued configuration by means
of the decomposition θ (x) = θ ′(x) + θ̃(x), where

∮
C

∇θ ′ = 0

174505-3



DEFENU, TROMBETTONI, NÁNDORI, AND ENSS PHYSICAL REVIEW B 96, 174505 (2017)

and
∮
C

∇θ̃ = 2πmi �= 0. Substituting this into Eq. (3), one
can show that the vortex part of the XY Hamiltonian in 2D is
equivalent to a Coulomb gas [29] with charges playing the role
of vortices. More precisely, it is the Villain model that can be
exactly mapped onto the Coulomb gas, and spin-wave–vortex
interactions give rise to additional contributions that can be
computed. In absence of a magnetic field, the mapping leads
to a neutral Coulomb gas with

∑
i mi = 0. The Coulomb gas

formalism allows for a sensible low-temperature expansion,
indeed for T � TBKT we expect only singly charged vortices to
be relevant and we thus include only mi = ±1 configurations.
The latter give rise to an additional cosine potential in the
spin-wave Hamiltonian, and the duality transformation maps
this to the SG model in the dual phase field �:

SSG[�] =
∫

d2x

(
1

2
∂μ�∂μ� − u cos (β�)

)
, (8)

with dimensional coupling u and dimensionless SG coupling
β (not to be confused with the symbol β = 1/T ). Also, the
XY model can be mapped onto the SG model (8) via the
Coulomb gas [28]; this can be intuitively understood because
the compact nature of the variable θ allows only perturbations
in the form of a periodic operator. Thus, from the RG point
of view, the theory space of a periodic field θ is naturally
described, at least at lowest order, by the SG model [75]. Note,
however, that the original compact phase θ is replaced by
the dual phase � in the SG model. We also observe that the
mapping between the XY and the SG models [28,36,73] has
the advantage of giving an explicit form for the bare coupling
of the SG model.

A key point, which we will use in the following, is that
the spin-wave Hamiltonian (3) with a compact variable θ is
equivalent to the Villain model, which, once vortices with
|mi | > 1 are neglected, is dual to the SG model (8) with β2 =
4π2K , which becomes critical at β2 = 8π .

The SG model has also been studied extensively in the
FRG framework, which provides a nonperturbative gener-
alization of the original Kosterlitz-Thouless RG equations
[33,51,76–80]. In the following, after briefly reviewing in
Sec. II B previous FRG work for the O(2) model, we
will combine the AP parametrization of the FRG with the
SG results into a comprehensive FRG treatment including
amplitude, spin-wave, and vortex excitations.

B. FRG results for the O(2) model in 2D

In this section we review and discuss previous FRG results
for the O(N = 2) field theory in d = 2. One can write the
quartic potential with ρ = |ϕ|2 as

U (ρ) = λk

2
(ρ − κk)2 (9)

and derive FRG equations for the flow of the scale-dependent
couplings. In the so-called LPA′ approximation [38] one has

∂t λ̃k = (2 − 2ηk)λ̃k − λ̃2
k

(4 − ηk)

8π

(
N − 1 + 1

(1 + 2κ̃kλ̃k)3

)
,

(10)

where k ∝ L−1 is an infrared momentum cutoff, λ̃k = k−2λk ,
and t = − ln (ka) = 0 . . . ∞ is the RG “time.” The flow

0.0 0.3 0.6 1.0
κ̃k

5

10

15

λ̃
k

FIG. 1. Flow diagram of the O(2) symmetric |ϕ|4 theory with
flowing effective potential (9) in parametrization (i). The flow is first
attracted toward a line of pseudofixed points at large κ̃k; then the flow
proceeds very slowly along this line toward (κ̃k,λ̃k) = (0,0), which
corresponds to the high-temperature phase.

equation for κ̃k reads as

∂t κ̃k = ηkκ̃k − (4 − ηk)

16π

(
N − 1 + 1

(1 + 2κ̃kλ̃k)2

)
, (11)

with κ̃k = Zkκk . The anomalous dimension at scale k is given
by

ηk = 1

π

κ̃kλ̃
2
k

(1 + 2κ̃kλ̃k)2
. (12)

These flow equations for λ̃k and κ̃k may easily be integrated
numerically [48], and the resulting phase diagram is shown in
Fig. 1. For initial conditions with sufficiently large κ̃k the flow
is rapidly attracted to a line of pseudofixed points at an almost
constant value of λ̃k . Once this line is reached, the flow slows
down substantially and leaves the system in its symmetry-
broken phase for intermediate RG times. For larger t → ∞, the
flow eventually escapes the low-temperature phase and reaches
the high-temperature phase with κ̃k = 0 at a finite time t < ∞.

Following [48], one can identify the unstable pseudofixed
line at finite λ̃k with the low-temperature phase of the BKT
transition. In this symmetry-broken phase, the complex field
can be decomposed into radial and transverse modes. The
radial (or massive) mode ρ is effectively frozen by its
finite mass mm ∝ 2λ̃kκ̃k , while the remaining massless Gold-
stone mode (mg = 0) is effectively described by the spin-wave
Hamiltonian (3) and has algebraic correlations. On the other
hand, for initial conditions in the small-κ̃k region, the flow
is rapidly attracted to the point κ̃k = λ̃k = 0 and enters a
high-temperature U(1) symmetric phase with exponential
correlations, which is identified with the disordered, high-
temperature phase of the BKT transition.

It is remarkable that the FRG treatment of the O(2) model is
able to recover the high-temperature phase without explicitly
considering vortex configurations. Indeed, the complex field
parametrization (i) implicitly includes the compact phase
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variable responsible for vortex excitations, in contrast to the
spin-wave action (3) when the phase is considered nonperiodic.

On the other hand, in the thermodynamic limit k → 0 there
is only one regime in Fig. 1, showing that spin-wave excitations
are always massive in this approximation. More precisely, the
FRG flow presented in Fig. 1 does not exhibit a sharp BKT
transition but rather a smooth crossover. Indeed, for large
enough length scales k−1 � a the flow always reaches the
symmetric phase and algebraic correlations disappear in the
thermodynamic limit for any T > 0. This is the result of vortex
unbinding, hence, the FRG calculation [48] overestimates the
effect of vortex configurations which appear to be relevant at
any finite temperature.

Note that a similar behavior was already found in the Migdal
approach to the XY model [28]. There, the RG equations
are written in terms of the periodic potential V (θ ) between
the phases of two neighboring spins. Even in that scheme an
unstable pseudofixed line is found with a phase potential very
similar to the one of the Villain model [27]. On the other hand,
for small enough values of k, the interaction potential always
reaches a high-temperature fixed point.

The failure of the Migdal approximation to reproduce the
expected low-energy physics of the 2D XY model has been
attributed to an insufficient representation of vortex correla-
tions, which leads to a systematic overestimation of the vortex
contribution in the long-wavelength limit [28]. A similar effect
may be responsible for the picture found in the lowest-order
FRG truncation. Indeed, neglecting higher derivative terms in
the |ϕ|4 action may overestimate the effect of vortex degrees
of freedom in the thermodynamic limit. Nevertheless, it is an
open question as to whether fully including higher derivatives
reproduces vortex-vortex correlations with the correct power-
law decay to stabilize the low-temperature phase.

One way to extract an anomalous dimension from the LPA′

FRG treatment with complex field parametrization (i) is to

0.0 0.2 0.4 0.6 0.8
κ̃k

−0.1

0.0

0.1

0.2

η

FIG. 2. The anomalous dimension η in the O(2) model (blue solid
line) represents the power-law decay of the two-point correlation
function. Its value is found from Eq. (12) along the pseudofixed line
in Fig. 1. The star represents the choice of η in [48,53]. The lower,
red solid curve gives the values of ∂t κ̃k along the same pseudofixed
line, while a line of true fixed points would have ∂t κ̃k = 0, as one has
in [53] by a temperature-dependent choice of the cutoff function.

effectively discard the finite flow along the pseudofixed line.
The condition ∂t λ̃k = 0 is evaluated numerically to obtain a
curve λ̃k = f (κ̃k) in (κ̃k,λ̃k) space. Once the finite flow ∂t κ̃k

is discarded along this line, one may compute the power-law
exponent η of the correlation function in the thermodynamic
limit using Eq. (12).

The result for η along the line of pseudofixed points is
depicted as a blue line in Fig. 2. The red curve below shows the
residual flow ∂t κ̃k along the pseudofixed line. This flow should
vanish for a line of true fixed points, while as it can be seen in
Fig. 2 it vanishes only in the limit κ̃k → ∞, remaining finite for
smaller κ̃k . Nevertheless, it is possible to identify a point where
|∂t κ̃k| starts to increase sharply and drives the system to the
disorder phase for small scales k. The anomalous dimension
at the turning point is surprisingly close to the expected value
1
4 . In Secs. IV and V below, we show how a line of true fixed
points and gapped amplitude excitations are found with the
AP parametrization. As a basis for this, we first discuss the
mapping between the XY and |ϕ|4 models in Sec. III.

III. MAPPING OF THE MODELS

In this section we derive the explicit mapping of the XY

model into a suitable |ϕ|4 theory via a Hubbard-Stratonovich
transformation [6,52,81]. While this mapping is well known,
we present it briefly in order to demonstrate how the XY model
of unitary spins is equivalent to a complex field ϕ with density
fluctuations. Via the mapping, our subsequent FRG analysis
of the |ϕ|4 model applies also to the XY model.

Our starting point is the XY model (1), which can be
written, apart from a constant energy, as

HXY = −J
∑
〈ij〉

(sx,isx,j + sy,isy,j ), (13)

where sx,i ≡ cos θi , sy,i ≡ sin θi can be combined into a vector
si = (sx,i ,sy,i) with s2

i = 1. The partition function is then given
by

Z(β) =
∫

Ds eβJ
∑

〈ij 〉(sx,i sx,j +sy,i sy,j )�jδ
(
s 2
j − 1

)
(14)

with Ds = �idsx,idsy,i ≡ �idsi . One can rewrite the parti-
tion function in the form

Z(β) =
∫

Ds es· K′
2 ·s�jδ

(
s 2
j − 1

)
, (15)

where s = (sx,1,sy,1, . . . ,sx,N ,sy,N ) is a 2N -dimensional vec-
tor and the matrix K ′ has elements 2βJ on the neighboring up-
per and lower diagonals. To perform the Hubbard-Stratonovich
transformation, we use the Gaussian identity

es· K′
2 ·s = [(2π )N

√
det K ′]−1

∫
Dφ e−φ· K′−1

2 ·φ−s·φ, (16)

where φ is a 2N vector composed of N two-component vectors
φj . Since K ′ is not positive definite, we replace it by a shifted
interaction

K = K ′ + 2βμ I (17)

that is positive definite for an appropriately chosen constant
μ; this amounts to a redefinition of the zero-point energy of
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the system. We then obtain

Z(β) = [(2π )N
√

det K]−1
∫

Dφ e−φ· K−1

2 ·φ+∑
j U (φj ), (18)

where the potential U is defined by

eU (φj ) =
∫

dsj e−sj ·φj δ
(
s j

2 − 1
)
. (19)

U can depend only on the quadratic invariant ρj = φ2
x,j + φ2

y,j ,
and we obtain

U (φ) = ln[πI0(
√

ρ)] (20)

in terms of the modified Bessel function I0. The matrix K−1

is diagonal in Fourier space with entries

K(q) = 2β[μ + Jε0(q)], (21)

where

ε0(q) =
d∑

ν=1

cos(qνa) (22)

is the dispersion relation on a d-dimensional cubic lattice for
momentum components qν and lattice spacing a (in our case
d = 2). It will be convenient to shift the kinetic term as

Skin[φ] = 1

2

∑
q

φq

(
1

K(q)
− 1

K(0)

)
φ−q . (23)

After a field rescaling

φ → 2

√
β

J
(Jd + μ)ϕ, (24)

one obtains the kinetic term

Skin[ϕ] = 1

2

∑
q

ϕqε(q)ϕ−q (25)

with dispersion relation [52]

ε(q) = 2(Jd + μ)
d − ε0(q)

Jε0(q) + μ
. (26)

In the continuum limit a → 0 we recover

εcl(q) = q2 (27)

to lowest order in q, where the subscript “cl” stands for
continuum limit. The potential term in the rescaled field reads
as

Spot[ϕ] =
∫

ddx

[
−U

(
2

√
β

J
(Jd+μ)|ϕ|

)
+Jd+μ

J
|ϕ|2

]
.

(28)

With this mapping of the XY model into a |ϕ|4 theory, we
can subsequently use our functional RG equations for both
models; only the initial conditions, i.e., the functional forms
of the dispersion ε(q) and the potential U (ρ), are different and
discriminate between the microscopic XY and |ϕ|4 models. We
finally observe that in the XY model amplitude fluctuations
are absent by construction, but there are spin-wave excitations
which interact with vortex fluctuations to modify the effective
phase stiffness in the thermodynamic limit. In the O(2)
equivalent (28) of the XY model, the finite renormalization of

the stiffness is partly due to the gapped amplitude fluctuations,
and partly due to longitudinal phase fluctuations, too. Hence,
amplitude fluctuations originate from the reparametrization of
the interaction between vortex and spin-wave fluctuations and,
as it will be shown in the following, represent a large part of
the renormalization of the superfluid stiffness.

IV. AMPLITUDE-PHASE PARAMETRIZATION

The complex field ϕ in (2), which is equivalent to the two-
component field ϕ in (28), can be parametrized in terms of real
amplitude ρ and phase θ according to

ϕ(x) =
√

ρ(x)eiθ(x). (29)

In this AP parametrization (iii) the |ϕ|4 action (2) reads as

S[ϕ] =
∫

ddx

{
1

8ρ
∂μρ∂μρ + ρ

2
∂μθ∂μθ + U (ρ)

}
. (30)

When applied to the XY model with the mapping (28), the
field expectation value is related to the XY magnetization by
〈ϕ〉 = √

βJm.
It is worth noting that the derivation of action (30) is a direct

consequence of Leibniz rule for continuous spatial derivatives
and it is not straightforwardly applicable to lattice models
where the kinetic contribution to the action cannot be expressed
in terms of continuous spatial derivatives. In any case, lattice
effects can be introduced by integrating the model in the ϕ

parametrization until an effective scale where only quadratic
momentum terms dominate, as it should always happen due to
universality.

Perturbative arguments suggest that the amplitude mode
is always gapped and does not influence the critical behavior
[54,58]. Instead, the critical behavior is dominated by massless
phase fluctuations. Indeed, in d = 2 only single vertex dia-
grams are relevant [26], and since the perturbative expansion
for the phase correlation function does not contain any single
vertex diagram, we expect only a finite renormalization of the
superfluid stiffness in the action (30). In the following, we
will explicitly treat amplitude fluctuation effects to show how,
even in the nonperturbative picture, they remain gapped at
criticality.

Consistent with these arguments, we propose a RG investi-
gation which treats amplitude and phase fluctuations separately
in two steps. The overall RG flow is thus effectively separated
into two scales: first, at high momenta, only noncritical
fluctuations are considered. They turn out to be irrelevant and
remain always gapped in the long-wavelength limit. At the
end of the AP flow, the minimum κk freezes, and we obtain an
effective SG model with a renormalized superfluid stiffness.
The effective couplings resulting from the amplitude stage
of the flow are then considered as initial conditions for the
traditional BKT flow [15] of the SG model, which describe
low-energy vortex excitations and produce the universal long-
wavelength behavior. The validity of our technique relies on
the separation of the scales for amplitude and vortex phase
fluctuations, and on the smallness of the interaction between
these excitations. Traditional perturbative arguments as well
as the consistency of our results suggest that these assumptions
are well justified.
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As a preliminary step, we first discuss uncoupled amplitude
and phase fluctuations. In this case, the superfluid stiffness
ρ = κk in the phase kinetic term remains fixed at the minimum
ρ0 of the potential U (ρ). The total action (30) then decouples
into a sum of two actions

S[ϕ] � SA[ρ] + SP [θ ], (31)

where

SA[ρ] =
∫

d2x

{
1

8ρ
∂μρ∂μρ + U (ρ)

}
, (32)

SP [θ ] = κk

2

∫
d2x ∂μθ∂μθ. (33)

The phase action (33) is equivalent to spin-wave model (3)
with K = κk , while for the XY model it is K = κkβJ . If
one considers the phase variable θ in (33) as noncompact,
the correlation function 〈ei[θ(x)−θ(y)]〉 is algebraic [14] and no
regularization is necessary to obtain this behavior [54].

The treatment within the AP parametrization shows that
the low-temperature expansion of the |ϕ|4 and XY models
must coincide, at least as long as perturbative arguments
are correct and amplitude fluctuations do not influence the
thermodynamic behavior. However, it is worth noting that this
analysis still does not yield a conclusive picture. Indeed, while
the previous FRG analysis based on the |ϕ|4 action (2) leads to
a finite correlation length at any temperature and reproduces
the BKT behavior only as a crossover, the amplitude and phase
scheme is equivalent to the spin-wave approximation of the XY

model and yields algebraic correlation at any temperature
TBKT = ∞.

To complete the picture, it is therefore necessary to
introduce vortex configurations. The spin-wave analysis in
Appendix A does not include discontinuous configurations
of the field θ and perturbative arguments cannot account for
topological excitations. These can be included using the dual
mapping described in [28,73] or by explicitly introducing
singular phase configurations [36,82]. The total partition
function of the system is then given by

Z � ZAZP , (34)

where we used the decomposition in Eq. (31).
In the case of frozen amplitude fluctuations, this model

becomes a pure phase SG model with a line of fixed points
and is described by the BKT flow equations

∂tKk = −πg2
kK

2
k , (35)

∂tgk = π

(
2

π
− Kk

)
gk, (36)

where K is the superfluid (phase) stiffness and gk is the vortex
fugacity. The fugacity g is related to the SG parameter as
u = g/π .

At the bare level, K and g assume the values

K� = ρ0, (37)

g� = 2πe−π2K�/2 (38)

for the |ϕ|4 model, and

K� = βJ, (39)

g� = 2πe−π2K�/2 (40)

for the XY model. In order to derive Eqs. (35) and (36), one
has to assume a UV regularization, which traditionally relies
in considering the Coulomb gas charges as hard disks of finite
radius [15].

It should be also noted that Eqs. (37)–(40) have been
obtained in the case of a purely quadratic kinetic phase term, as
in the Villain model. In the O(2) model the absence of higher
gradient terms in the phase is the result of the decoupling in
Eq. (31). In principle, one expects amplitude fluctuations to
generate also higher gradient terms and therefore action (33)
represents only the lowest-order approximation in derivative
expansion.

In the small vortex fugacity limit gk 	 1, the BKT flow
equations (35) and (36) reproduce the BKT temperature in
Eq. (6), while for larger values of the initial condition g� the
BKT flow introduces multivortex corrections which lower the
BKT temperature. For a discussion of these effects and of
vortex core energies we refer to [71,83]; the prediction for
the jump of the superfluid stiffness, 2mT

π
(1 − 16πe−4π ), with

a correction of 0.02% with respect to the Nelson-Kosterlitz
prediction 2mT/π , has been tested in extensive Monte Carlo
simulations [71,72].

V. RESULTS

Although the universal behavior of the BKT transition
is completely driven by topological excitations, in the |ϕ|4
and XY models the contribution of, respectively, longitudinal
and amplitude fluctuations to nonuniversal quantities may
be different. Due to the mapping discussed in Sec. III, it is
possible to build a |ϕ|4 model which exactly reproduces the
XY model and where amplitude fluctuations play the role of
longitudinal spin excitations. It is then convenient to study the
BKT transition first in the |ϕ|4 formalism and then transfer
the results to the XY model, which we do subsequently in
Secs. V A and V B.

A. |ϕ|4 model

In this section we apply the FRG to the |ϕ|4 action in the
AP parametrization (30). As discussed in the previous section,
at the perturbative level the amplitude mode ρ remains gapped
while the phase fluctuations θ produce power-law correlations
at any finite temperature, so the high-temperature phase of the
BKT transition is not reproduced. In this section we revisit this
issue at the nonpertubative level.

Our FRG procedure is based on two steps: (a) we first
perform the FRG flow for the amplitude part SA of the action
(32), which yields a renormalized superfluid stiffness; (b) we
then insert this stiffness into the phase part SP of the action
(33), which for a compact phase is equivalent to the SG model
(8) so we can use the BKT flow equations (35) and (36).

In the FRG approach for the amplitude part we introduce
as infrared regulator a momentum-dependent mass term for
the amplitude fluctuations. As the cutoff scale is lowered,
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FIG. 3. Flow diagram for the rescaled superfluid stiffness κ̃k and interaction λ̃k due to amplitude fluctuations in d = 2. For large enough
λ̃�, the flow always proceeds towards an infinitely interacting λ̃k�0 � +∞ fixed line where the expectation value ρ̃0 = κk is effectively frozen.
(a) The naive AP flow is (incorrectly) attracted for λ̃� 	 1 toward the free theory. (b) The modified AP flow with the Gaussian contributions
subtracted reproduces the expected flow diagram.

the effective action flows from the model-dependent initial
condition (32) to the full effective action. For the flowing
effective action we choose the ansatz

�k[ρ,θ ] =
∫

ddx

{
1

8ρ
∂μρ∂μρ + ρ

2
∂μθ∂μθ + Uk(ρ)

}
, (41)

and with the regulator (B2) we obtain the flow equation (B6)
for the effective potential of amplitude and phase fluctuations
(for details see Appendix B).

The flow equation is solved numerically for the full
potential Uk(ρ). In order to draw a flow diagram, we Taylor
expand the potential Uk = λk(ρ − κk)2/2 around its minimum
ρ = κk for every k and trace the flow in (κk,λk) space. The
resulting flow diagram is shown in the left Fig. 3(a) in terms
of the rescaled “dimensionless” couplings λ̃k and κ̃k . This
first naive attempt at the AP flow is not yet correct: indeed
in the lower left corner of the phase diagram, the λk coupling
becomes irrelevant and the flow runs toward a region of gapless
amplitude fluctuations; although this effect is not as severe
as in previous parametrization, since it arises only for small
values of the bare coupling λ�, it is not in agreement with
the expectation of irrelevant amplitude fluctuations in the
thermodynamic limit. This inconsistency arises from an IR
divergent term in the standard formulation of the Wetterich
equation. Indeed, already the flow of the free Gaussian model
in the AP parametrization has the same divergence because the
phase kinetic term depends on the field ρ.

This spurious contribution originates from the different
ways the Gaussian theory is represented in the amplitude and
phase parametrization. In the path-integral formulation, the
Gaussian O(2) model (2), with U = 0, can be exactly inte-
grated, yielding an effective action with the same functional
form of the microscopic action, in agreement with mean field
approximation being exact for Gaussian theories. Thus, also
in the FRG formalism the flow of Gaussian theories should
vanish and the bare action should be equivalent to the fully
renormalized one. Nevertheless, when one uses the Wetterich

equation to calculate the flow of a Gaussian ansatz in the
traditional O(N ) formalism, one gets a constant flow for the
effective action [84,85]. Thus, the functional form of a Gaus-
sian action is preserved by the FRG formalism apart for a field-
independent term, which is diverging in the long-wavelength
limit. Such a term is unnecessary in the computation of most
of the system properties and it is usually neglected.

In free-energy calculations the constant term in the effective
action is essential and should be kept finite. The most common
regularization procedure is to subtract the noninteracting
(λk = 0) component from the right-hand side of the Wetterich
equation under study [84,85]. The Gaussian theory in the
AP parametrization has a linear field potential term and a
nonanalytic kinetic term, as in Eq. (41) with Uk(ρ) = μρ.
The nonanalytic term prevents the exact integration in the AP
representation and makes it appear to be not exactly solvable;
in fact, the AP representation is singular in the ρ → 0 limit.
In our application, the amplitude fluctuations remain gapped,
so the AP parametrization is always valid.

As stated above, the FRG flow of Gaussian theories does
not completely vanish, and in the amplitude and phase repre-
sentation the remaining contribution also picks up a spurious
field dependence, which is the counterpart of the nonanalytic
kinetic term preventing an exact integration in the path-integral
formalism. Since one knows that the functional form of
quadratic theories remains the same at bare and renormalized
level and this property must remain valid regardless of the
chosen representation, one can safely subtract the equivalent
Gaussian contribution from the flow equations and force them
to be zero for quadratic theories, as it is done in the traditional
case for free-energy calculations.

With this modification, the potential flow equation (B6)
becomes

∂tUk(ρ) =
4αρk2 ln

(
α+4αρU (2)(ρ)/k2

α+U (2)(ρ)/k2

)
4π (4αρ − 1)

. (42)
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The parameter α = αρ characterizes the regulator (B2); Fig. 3
has been plotted with αρ = 2, but below we set α = (4κ∗)−1

self-consistently with the value of κ at the end of the flow.
The modified Eq. (42) now produces the correct flow

diagram shown in the right Fig. 3(b). The flow equations for
the dimensionless minimum κ̃k and interaction λ̃k read as

∂t κ̃k =
α

(
4κ̃k (1−4ακ̃k )

4κ̃k λ̃k+1
+ ln

(
α+4ακ̃k λ̃k

α+λ̃k

)
λ̃k

)
π (1 − 4ακ̃k)2

, (43)

∂t λ̃k = 2λ̃k −
8α2 ln

(
α+λ̃k

α+4ακ̃k λ̃k

)
π (4ακ̃k − 1)3

− 8αλ̃k[2κ̃kλ̃k(4ακ̃k + 1) + 1]

π (1 − 4ακ̃k)2(4κ̃kλ̃k + 1)2
. (44)

As expected, the mass term of amplitude fluctuations does
not vanish. The dimensionless λ̃k keeps growing because the
action (41) with a noncompact phase has no fixed point. Indeed,
κ̃k is marginal in 2D, and after an initial renormalization by
amplitude fluctuations at finite λ̃k , it remains frozen up to
infinite length scales (k → 0).

The results of Fig. 3(b) are in agreement with the ex-
pectation from perturbation theory and show that amplitude
fluctuations are irrelevant in the RG sense and only lead to a
finite renormalization of the stiffness. Note that this irrelevance
has been proven in the truncation scheme described by the
ansatz (41), where only the lowest-order coupling between
amplitude and phase is present. Indeed, also phase fluctuations
drive the flow of the effective potential Uk(ρ) in the first term
of the original flow equation (B6), but this contribution is
canceled when subtracting the Gaussian part to obtain (42).
In a more general truncation scheme we do not expect this
cancellation to persist, but we are confident that the remaining
phase-amplitude terms will be irrelevant.

It is useful to compare the results of Figs. 1 and 3(a) with
those of Fig. 3(b): both represent the theory space of a 2D
two-component field theory where the order parameter has
U(1) symmetry. However, differences arise in the treatment
of the kinetic term: in Fig. 1 the flow for the couplings
has been obtained including the full |ϕ|4 invariant kinetic
term, which incorporates both amplitude and phase degrees
of freedom. There, for λ� large enough, the flow is attracted
to a pseudofixed line and the IR theory appears to have finite
κ̃k , finite λ̃k , and massive amplitude fluctuations at finite k. At
the same time, a fixed λ̃k produces a vanishing dimensionful
λk = k2λ̃k in the thermodynamic limit k → 0. Hence, it is
not surprising that for k small enough the superfluid density
κk tends to vanish because of the increasing relevance of
amplitude fluctuations. In contrast, the modified flow in the
right Fig. 3(b) is consistent with fully gapped amplitude
fluctuation and frozen amplitude (superfluid stiffness) κk ≡ κ∗.
Indeed, for every finite λ̃� > 0, the flow is attracted by a stream
line at fixed κ̃k and λ̃k ∝ k−2λ∗, yielding λk � λ∗ for k 	 �.

Having shown that the modified AP flow agrees with the
perturbative results and the BKT scenario, we are in a position
to verify that our approach reproduces the expected univer-
sality of the thermodynamics of the 2D Bose gas [58–62,64]
and to quantify the agreement with Monte Carlo results. In

particular, starting the flow from the initial conditions (37) we
can compute the following:

(a) the superfluid density ρs , which is equal to the coupling
κ∗; and

(b) the critical chemical potential μc as a function of the
bare interaction U .

To achieve this result, we perform the renormalization
group procedure described above with the initial condition

U�(ρ) = U

2
(ρ − κ�)2, (45)

where U is the effective interaction and μ = Uκ� is the
chemical potential of the classical 2D |ϕ|4 model we are
studying.

The known results for the 2D quantum Bose gas with which
we want to compare are the following [61]:

(1) the thermodynamic quantities have to collapse once
expressed in terms of the dimensionless variable

X = μ − μc

mT U
, (46)

which measures the distance from the critical point.
(2) The superfluid density defines a function f (X) via the

relation

ρs = 2mT

π
f (X). (47)

Note that the predicted jump of the superfluid stiffness ρs =
2mT/π at criticality [20] implies that f (X) jumps from 0 to 1
at X = 0. The collapse of the superfluidity function using the
variable X is shown in Figs. 4(a) and 4(b).

(3) For small X > 0 one has

f (X) = 1 +
√

2κ ′X, (48)

with coefficient [62]

κ ′ = 0.61 ± 0.01. (49)

(4) For 2D quantum systems in the continuum, one has the
following results in the weakly interacting limit for the critical
density ρc and the critical chemical potential μc (respectively
in the canonical and grand-canonical ensembles):

ρc = mT

2π
ln

ξ

mU
, (50)

μc = mT U

π
ln

ξμ

mU
. (51)

The parameters ξ , ξμ, extracted from Monte Carlo simulations
in a classical lattice |ϕ|4 model and via a careful analysis
of the mapping between the simulated lattice model and the
continuum limits, have been estimated to be ξ = 380 ± 3 and
ξμ = 13.2 ± 0.4 [61,62]. An earlier FRG approach, once the
transition point has been empirically fixed, yields ξμ = 9.48
in good agreement with MC simulations [64]. The logarithm
of their ratio,

θ0 ≡ 1

π
ln (ξ/ξμ), (52)

is a nontrivial universal number, determined to be [62]

θ0 = 1.068 ± 0.01. (53)
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FIG. 4. Superfluid density ρs as a function of chemical potential. (a) ρs/mT vs μ/U for seven different values of mU = 0.6 . . . ,0.02 from
top to bottom. (b) ρs/mT vs dimensionless chemical potential X. Inset: critical chemical potential μc/U vs U .

We now present our results for these nonuniversal and
universal properties of the |ϕ|4 model. In Fig. 4(a) we report
our results for the superfluid fraction ρs for different values of
U . In Fig. 4(b) we plot the same curves vs the dimensionless
variable X. We find that they collapse almost perfectly even
for a wide range of interactions mU = 0.02, . . . ,0.6. Note
that the spreading between the curves increases for large X,
as expected, since the universality should hold only in the
fluctuation regime up to X ≈ 1/mU and we use also rather
large values of U . To quantitatively determine the function
f (X), we perform an interpolation of the curves for ρs(X),
some of them shown in Fig. 4(b), and compute their average
and variance, which are reported in Fig. 5. The average has

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
X

0.0

0.5

1.0

1.5

2.0

2.5

3.0
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f
(X

)

FIG. 5. Superfluid scaling function f (X) = πρs/2mT (black
line) as a function of the chemical potential variable X (average
and variance over 30 sets of data for different interaction values U ),
the standard deviation is shown as a red shadow. Black dots are the
MC data from [62].

been computed over a total number of 30 curves obtained for
30 different values of the interaction logarithmically spaced
in the interval U ∈ [0,1], the curve f (X) can be trusted also
for large X since the statistical weight of large interaction
U > 0.5 is small. Agreement with Monte Carlo data [62] is
rather good, also considering that we are using the lowest-order
perturbative SG results (37) and (38).

Our findings for μc as a function of U are given in the inset
of Fig. 4(b). Logarithmic corrections to the relation μc ∝ U are
found, in agreement with Eq. (51). The coefficient ξμ entering
such logarithmic corrections is not reported since the fitting
procedure employed was not robust enough and the result
strongly depends on the range of interactions considered, even
for U � 0.3 which should be within the range of validity of
Eq. (51) [86].

The ρs(X) in Fig. 4(b) determines the function f (X) =
πρs(X)/2mT reported in Fig. 5. From f (X) we can obtain
estimates for the universal quantities κ ′ and θ0. Fitting with
expression Eq. (48), the data in Fig. 5 yield

κ ′
(FRG) = 0.67 ± 0.07, (54)

in reasonably good agreement with the Monte Carlo result
(49). The latter result has been obtained from a linear fit of the
curves in Fig. 4(a) and averaging κ ′ over the values obtained for
different interactions. The average is consistent with (54) while
the error is partly due to difficulties in fitting procedure close
to the transition point and partially to nonperfect universality
of the curves in Fig. 4(a).

Regarding θ0, we observe that for relatively large X one has
f (X) ≈ (π/2)θ (X) − 1/4 in terms of the universal equation
of state θ (X) [62]. It should be noted that in order to evaluate
θ0 = θ (X = 0) from f (X) one shall extrapolate the value
of a curve obtained for large X to the point X = 0. Such
extrapolation has been done assuming polynomial behavior of
θ (X). A polynomial fit of the ρs curves of different interactions
at high values of X yields

θ0(FRG) = 1.033 ± 0.032, (55)
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again in fairly good agreement with the Monte Carlo result
(53).

B. XY model

As we discussed in Secs. III and IV, one can treat the XY

model as a |ϕ|4 model, provided that one uses the appropriate
initial condition for the RG flow, as extracted from the mapping
of Sec. III, and that one rescales the field by

√
βJ to have a

magnetization with absolute value smaller than one.
The XY model has been the subject of intense investigations

from different perspectives and several quantities have been
studied in detail, which we can now study with the FRG
approach presented in this paper. Here, to test the validity of
our approach, we focus on the renormalized phase (superfluid)
stiffness Js(T ) and quantify the effect of amplitude fluctuations
on it. We proceed by computing κ∗ as discussed in the previous
Sec. V A, then the stiffness is given by

Js(T ) = Jκ∗, (56)

where Js(T ) indicates the effective bare superfluid stiffness
without inclusion of vortex configurations. In the following,
the same notation will be used also to indicate the fully
renormalized spin stiffness in presence of vortex excitations
since the two definitions can be simply regarded as two levels
of approximation for the same quantity.

All the physical quantities should be independent of the
mapping parameter μ [52]. However, in the following we
are going to discard lattice effects, effectively replacing the
lattice dispersion (26) with the continuum dispersion (28).
Such an approximation introduces a μ-dependence in the
physical quantities, which we may fix either from mean field
or low-temperature results.

To clarify the different approximations which we are
going to consider for the FRG computation of Js(T ), let us
recapitulate the logic followed so far. Starting from the action
of the |ϕ|4 model in the continuum limit, we introduced the
AP parametrization (29) and we decoupled the phase and
amplitude degrees of freedom by substituting ρ = κk into the
phase kinetic term. The phase action (33) is then equivalent
to the low-temperature expression of the XY Hamiltonian (3)
and we can apply the usual BKT flow equations (35) and (36).
The amplitude fluctuations then encode all fluctuations except
for vortices, which are encoded at perturbative level in the
BKT flow equations.

It is instructive to consider first the mean field approxima-
tion. A first step is to completely discard amplitude fluctuation
and simply set κk = const, which can be re-absorbed into
the definition of J . A further step is to consider only a
saddle-point approximation for the amplitude fluctuations.
Their expectation value is given by κMF = ρMF(T ) such that

∂Spot[
√

βJρMF]

∂ρMF
= 0, (57)

where Spot[ϕ] is defined in Eq. (28) and the additional
√

βJ

factor in the argument is needed to reproduce the K ≡ βJ

factor in Eq. (3). Thus, at first order in our treatment we find

Js(T ) ≡ JκMF(T ). (58)

For small T , longitudinal fluctuations are practically frozen
and limT →0 Js(T ) = J . At larger temperatures κMF(T ) de-
creases since longitudinal fluctuations reduce the stiffness. Fi-
nally, Js(T ) vanishes at a finite temperature value TMF > TBKT.
The mean field critical temperature TMF is given by TMF = 2J

(TMF = dJ for a hypercubic lattice in d dimensions). To obtain
this value of TMF one has to fix μ = 0. This choice turns out
to be a reasonable one since one finds for small T

Js(T )

J
= 1 − T

2TMF
+ · · · = 1 − T

4J
+ · · · , (59)

in agreement with the results of the self-consistent harmonic
approximation [87], which predicts Js(T )/J = 1 − T/zJ for
a model with z nearest neighbors at small T . In 1D this agrees
also with the exact low-temperature result [88]; see as well the
discussion in [36] on the low-temperature behavior of Js(T )/J .
We also mention that Monte Carlo simulations [89] confirm
that for low temperature one has that the slope ∂Js/∂T for
T → 0 is 1

4 , as given in (59).
In order to go beyond the saddle-point approximation, it is

necessary to explicitly solve the flow equation (42). Then, the
expectation value κ∗ for the field ρ is defined by the minimum

∂Uk→0(ρ)

∂ρ

∣∣∣∣
κ∗

= 0, (60)

and the phase stiffness is given by (56).
Our results are summarized in Fig. 6 which shows the

temperature dependence of the spin stiffness Js(T ). In this
figure, the solid lines correspond to the results generated by
amplitude fluctuations using Eq. (56), but without considering
the vortex fluctuations. The different lines correspond to
different approximations discussed in the following. The
dashed lines represent the vortex renormalized stiffness and are

0 0.5 1 π/2TBKT

T

0.00

0.25

0.50

0.75

1.00

J
s(

T
)

FIG. 6. Superfluid stiffness Js in units of J as a function of the
temperature for the XY model. The purple lines represent the |ϕ|4
model with initial condition (28) for the potential and μ = Jd , as
detailed in the case a of the main text. The blue lines are the case b,
the gray lines the case c, and the green lines the case d. Solid and
dashed lines represent, respectively, the results without and with the
inclusion of vortex excitations.

174505-11



DEFENU, TROMBETTONI, NÁNDORI, AND ENSS PHYSICAL REVIEW B 96, 174505 (2017)

obtained by considering the effect of vortex fluctuations via the
perturbative SG equations (35) and (36) with initial conditions
(39) and (40) after performing the RG for the amplitude modes.
Without vortex fluctuations, the BKT temperature is simply
obtained by the intersection of Js(T ) with 2T

π
. From top to

bottom of Fig. 6 we have the following:
(a) FRG, initial condition (28), μ = Jd (purple lines):

TBKT/J = 1.19 ± 0.02.
(b) low-temperature expansion (59) (blue lines):

TBKT/J = 1.00 ± 0.02.
(c) mean field estimate (61) of Js(T ), μ = 0 (gray lines):

TBKT/J = 0.96 ± 0.02.
(d) FRG, initial condition (28), μ = 0 (green lines):

TBKT/J = 0.94 ± 0.02.
In the figure we also plot for comparison the Monte Carlo
result TBKT/J = 0.893 (red star).

A remark is in order here: When mapping the XY model
onto the two-component |ϕ|4 lattice field theory in Sec. III,
we underlined that the mapping is exact and the results should
be μ independent as long as μ � Jd. However, as discussed
above, our FRG flow equation for the action (30) is applied to
the XY model by modifying only the initial condition for
the bare potential. This procedure is incomplete since the
lattice field theory equivalent of the XY model has the lattice
dispersion (26) rather than the continuous one (27). Therefore,
the application of the FRG flow with continuous dispersion
(27) and μ = Jd (purple line in Fig. 6) is a rather crude
approximation and does not agree with the low-temperature
expansion (blue line).

Moreover, approximating the lattice dispersion with a
continuous dispersion introduces a μ dependence in our result.
We can exploit this and fix μ = 0 to approach the exact
low-temperature asymptotics (59). While such a value of μ

would not be allowed in the lattice theory with dispersion
(26), it is permitted in the continuous case. The resulting green
solid line in Fig. 6 shows a consistent improvement over the
low-temperature expansion (blue line).

Since the effect of the amplitude fluctutations in the
continuous |ϕ|4 model with effective potential (28) is rather
small, we expect that analytic results for the superfluid stiffness
obtained from the saddle-point solution follow very closely the
exact results in all the range of the temperature between zero
and TBKT. This can be made quantitative by observing that one
could obtain very good results (plotted as gray lines in Fig. 6)
by solving the following mean field equation for the superfluid
stiffness Js(T )/J :

Js(T ) = J
I1[4βJs(T )]

I0[4βJs(T )]
(61)

(which is the solid gray line), and then use it as initial condition
in the perturbative SG equations (35) and (36). The procedure
gives the dashed gray line and TBKT = 0.96 ± 0.02, worse than
the value (62) we find using μ = 0, but again reasonably good.

In conclusion, our most accurate results come from the
nonperturbative evaluation of the FRG flow for the amplitude
mode combined with the perturbative SG flow for the phase:

TBKT(FRG)

J
= 0.94 ± 0.02, (62)

in good agreement with the expected result for the XY model
TBKT � 0.893J obtained by MC simulations [68–72]. Note
that this very good agreement for the critical temperature
has been obtained by matching with the appropriate choice
of μ known the low-temperature behavior of the superfluid
stiffness.

VI. CONCLUSIONS

The topological phase transition in two-dimensional spin
models with continuous symmetry as explained by the
Berezinskii, Kosterlitz, and Thouless (BKT) theory is a
celebrated result. Our aim in this paper has been to set up
and implement a renormalization group framework for the
BKT universality class to quantitatively determine nonuni-
versal properties such as the temperature dependence of the
superfluid fraction, the critical chemical potential, and the
transition temperature, given their relevance in 2D realizations
of BKT physics and in current experiments.

After discussing the role of the parametrization of the field
in functional RG approaches to 2D BKT phase transitions, we
argue that the amplitude-phase (AP) Madelung representation
of the field is the natural choice to study the contribution of
longitudinal spin fluctuations to nonuniversal quantities, and
we show that amplitude fluctuations are gapped at the critical
point. With the AP parametrization we have been able to
study the RG flow directly in the relevant degrees of freedom:
amplitude (density) fluctuations, longitudinal spin waves, and
vortex excitations, and we discuss their mutual interplay.

As a preliminary step, we have derived an explicit mapping
from the 2D lattice XY model to a continuum |ϕ|4 field theory.
While in three and higher dimensions this continuum limit
is straightforward, in two dimensions the mapping depends,
qualitatively and quantitatively, on nonuniversal ultraviolet
details of the initial model. As a result, we have mapped the
original XY coupling J to the initial superfluid stiffness ρ and
interaction λ at cutoff scale � of the corresponding |ϕ|4 model.
Therefore, the RG equations are the same and only the initial
conditions differ to characterize the XY and |ϕ|4 models, so
that they can be treated within the same formalism on equal
footing.

We then proceeded to write the action in the amplitude and
phase degrees of freedom and we have shown that amplitude
excitations are gapped, such that the BKT behavior is correctly
recovered as a transition and not as a crossover at large
distances. This result is based on the explicit subtraction in
the functional RG equations of the Gaussian energy. While
this is mainly a technical point, we think it is an interesting
one since (i) in many other applications such contributions do
not have any physical effect in the determination of the critical
properties of O(N ) models, and (ii) the AP representation
provides a straightforward way to show this effect.

Our FRG procedure is then based on two steps: we first
perform FRG on the amplitude part SA of the action (32).
We then insert the obtained stiffness into the phase part of
the action, which is given by the spin-wave action (33) with
the phase crucially considered as a periodic variable. This
allows us to correctly take into account the compact nature of
the phase variable and to use the results of the sine-Gordon
model.
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The combination of the nonperturbative functional RG anal-
ysis of the amplitude part of the action with the perturbative
flow for the sine-Gordon model is already sufficient to give
rather good results for nonuniversal and universal quantities.
In particular, we determined the critical chemical potential
for the |ϕ|4 model and the nontrivial universal parameters
κ ′ and θ0 defined in Eqs. (49) and (53). Our results for
these two parameters are κ ′

(FRG) = 0.67 ± 0.07 and θ0(FRG) =
1.033 ± 0.032, which should be compared with the Monte
Carlo results κ ′ = 0.61 ± 0.01 and θ0 = 1.068 ± 0.01 [62].
For the XY model we obtained the temperature dependence of
the stiffness Js(T ), which receives nonuniversal corrections
from amplitude fluctuations. It reproduces the exact low-
temperature limit and predicts the critical temperature with
an error of ≈5%.

In conclusion, our findings confirm that amplitude fluctua-
tions only result in a finite renormalization of the stiffness and
do not completely deplete the superfluid fraction. We also find,
without a priori assumptions, that amplitude fluctuations are
frozen for the |ϕ|4 model and yield effectively a phase-only
model of spin-wave and vortex excitations. Finally, we proved
that the combined use of the functional RG for the amplitude
modes and of perturbative results for the sine-Gordon model
allows one to quantify the effect of vortex excitations at finite
temperature, which depends on the value of the vortex core
energy and yields a further lowering of Tc [36]. Results for
several universal and nonuniversal quantities are presented,
with a very good agreement with known results.

To further improve the results obtained for both the |ϕ|4
and the XY models, one can include nonperturbative effects in
the sine-Gordon part of the RG flow. To this end, one should
compute the anomalous dimension η in the nonperturbative RG
flow of the sine-Gordon model. Moreover, for the XY model,
one should include lattice effects [52] which are beyond the
scope of this paper. The study of lattice effects leads in a natural
way to generalized sine-Gordon models, which we think is
promising for future work. Although the obtained results are
rather good, we think that the nonperturbative treatment of the
SG part of the action, and of the lattice effects for the XY

model, may lead to further improvements that are worthwhile
to estimate.

This work can provide a basis for future efforts to derive
a generalized sine-Gordon model which comprehensively
includes amplitude fluctuations on equal footing with phase
fluctuations, and not as an initial condition from a previous
RG step, as we did in this paper. In this way, one should be
able to describe also the feedback of vortex excitations onto
amplitude fluctuations. We think that it would be interesting
to extend the results of this work to 2D quantum systems in
order to quantitatively determine Tc as a function of interaction
strength in ultracold Bose [7,8] and Fermi gases [9,90–93] and
for out-of-equilibrium situations [94–96].

Note added. Very recently, an FRG treatment of the XY

model by Krieg and Kopietz appeared on arXiv, see the pub-
lished version [97]. Within the Coulomb gas representation,
these authors include amplitude fluctuations perturbatively and
find a true line of fixed points, confirming the importance
of explicitly using vortex degrees of freedom. The main
difference is that our approach treats amplitude fluctuations

nonperturbatively, while [97] includes lattice effects explicitly
[52].
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APPENDIX A: SPIN-WAVE APPROXIMATION

The expression for the magnetization is given by

Mi =
〈
eiθi

2

〉
+

〈
e−iθi

2

〉
, (A1)

while the expression of the spin-spin correlation function on
the lattice is

Gij = 〈cos(θi − θj )〉. (A2)

Both are conveniently rewritten in continuous notation as

F (x) =
∫

Dθ e
∫

[− K
2 (∇θ)2+J (x ′)θ(x ′)]ddx ′

(A3)

with J (x ′) = iδ(x ′) and J (x ′) = iδ(x − x ′) − iδ(x ′), where
the two expressions are valid, respectively, for the magneti-
zation and the two-point correlation function. The integral in
latter expression yields

F (x) = e
∫

[ 1
2K

J (x ′)G(x ′−y ′)J (y ′)]ddx ′ ddy ′

=
{

M(x) = e− 1
K
G(0),

G(x) = e
1
K

[G(x)−G(0)],
(A4)

where

G(x) =
∫

ddq

(2π )d
e−iq·x

q2
(A5)

(the x = 0 case must be evaluated separately in a finite volume
and in the thermodynamic limit). In a finite system of size L

we obtain in d = 2

GL(0) = 1

2π
ln

(
L

a

)
, (A6)

leading to a vanishing magnetization in the 2D system in the
thermodynamic limit.

In order to evaluate G(x) it is convenient to perform the
computation directly in the thermodynamic limit. We first
consider a general dimension d and then compute the d → 2
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limit. One has then

G(0) = sdπ
d−2

d − 2
a2−d , (A7)

where sd is the surface of the d-dimensional unit sphere
divided by (2π )d . The finite-x expression can be obtained
in the continuum limit a → 0 as

G(x) = sdx
2−d

(d − 2)
, (A8)

and one obtains

lim
d→2

[G(x) − G(0)] = − 1

2π
ln

(
πx

a

)
. (A9)

APPENDIX B: FLOW EQUATIONS FOR
THE AMPLITUDE AND PHASE SCHEME

In order to derive the FRG flow equations, we project the
Wetterich equation [37] onto the theory space defined by the
effective action ansatz (41) to obtain [38]

∂tUk(ρ) = 1

2

∫
ddq

(2π )d

[
∂tR

(θ)
k (q)

ρ q2 + R
(θ)
k (q)

+ ∂tR
(ρ)
k (q)

(4ρ)−1q2 + U
(2)
k (ρ) + R

(ρ)
k (q)

]
. (B1)

We choose both amplitude and phase regulators R(
), with

 = ρ,θ , of the form

R
(
)
k (q) = α
(k2 − q2)θ (k2 − q2), (B2)

where α
 is a dimensional coefficient necessary to have the
correct scaling dimension of the regulator terms. The scale
derivative of the regulator is then

∂tR
(
)
k (q) = −(2 α
 − ∂tα
)k2θ (k2 − q2). (B3)

These θ functions in the numerator of the integral in Eq. (B1)
constrain the momenta to q2 ∈ [0,k2], where the regulator θ

functions in the denominators are always unity. We are then
left with the calculation of two integrals of the type (in d = 2)

1

2π

∫ k2

0
k2(aq2 + b)−1q dq, (B4)

where a and b are two q-independent constants. It is convenient
to define the rescaled variable x = q2/k2 leading to

k2

4π

∫ 1

0

(
ax + b

k2

)−1

dx = k2

4πa
ln(1 + ak2/b). (B5)

Substituing a and b with the coefficients of the integrals in
Eq. (B1), one obtains the full potential flow equation

∂tUk(ρ)

= − k2

4π

(
αθ ln(ρ/αθ )

ρ − αθ

+
4αρρ ln

(
1 + 4αρρ−1

4ρU ′′
k (ρ)/k2+1

)
4αρρ − 1

)
,

(B6)
where we have used the fact that ∂tα
 = 0 in two dimensions.
The flow for Gaussian theories U ′′

k (ρ) = 0 is simply

∂tUk(ρ) = − k2

4π

(
αθ ln(ρ/αθ )

ρ − αθ

+ 4αρρ ln(4αρρ)

4αρρ − 1

)
. (B7)

According to the discussion in the text, the flow for Gaussian
theories must vanish, thus, in order to enforce this condition,
we simply subtract the right-hand side of Eq. (B7) from
the right-hand side of Eq. (B6). The latter procedure finally
produces Eq. (42) in the text.

This equation is solved numerically for the full potential
function to produce the numerical results shown in Sec. V.
Nevertheless, in order to gain a qualitative understanding of
the flow, it is useful to employ a second-order Taylor expansion
around the running potential minimum

Uk(ρ) = λk

2
(ρ − κk)2, (B8)

which leads to the following flowing RG couplings:

∂tκk = −∂tU
(1)
k (κk)

U
(2)
k (κk)

, (B9)

∂tλk = ∂tU
(2)
k (κk) + U

(3)
k (κk)∂tκk. (B10)

The general flow equation (B6) contains two free parameters
αθ,ρ , which are dimensionless in d = 2. The phase diagram
in Fig. 3 has been obtained with αθ = κk and αρ = 1/(4κk) in
order to simplify the flow equations, but different choices of
these parameters give equivalent results.
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