Il From the Ear to the Cortex

1) Anatomy

2) Neurophysiology: Transport from the Cochlea to the
Cortex

3) Cochlear Mechanics and Neural Signals

4) The Problem of Pitch Recognition
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Brain mass 1508 g

Total number of neurons in brain 86 billion
Total number of non-neurons in brain 85 billion
Mass, cerebral cortex 1233 g
Neurons, cerebral cortex 16 billion
Relative size of the cerebral cortex 82 % of brain mass
Relative number of neurons in cerebral cortex 19% of brain neurons
Mass, cerebellum 154 g
Neurons, cerebellum 69 billion
Relative size of the cerebellum 10% of brain mass
Suzana Herculano-Houzel* 1 b| I I iO N = 1 0 9

Instituto de Ciéncias Biomeédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil

Brain consists of neurons and glial cells (glue).



The stations communicate by neurons. Soma, axion, dendrits. Communicate by
synapses with about 10*3 synapses per neuron

ca 100000 neurons /mmA3

Drawing by Ramon y Cajal Photograph
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Information on neurophysiology from
*Anatomy (Lesions, zytoarchitecture (post mortem) with high resolution MRI
perhaps also non-invasive)
*Direct measurement Patch clamps, mostly from animals, from huamns only if
medically indicated. "~ Gold Standard"
*Noninvasive methods:
Direct: Measurement of evoked fields: EEG, MEG
Indirect: Through change in metabolism: FMRI, PET



Encoding of information transported and processed by neurons.

Labeled line code. A special nerve fiber conveys specific information
from its origin.

Johannes Mueller, early XIXth: different nerve fibers elicit different
sensations according to their ““specific nerve energy. If someone hits
your eyeball, you see a flash

Rate code. Information is transmitted by the firing rate. Very apt for
quantitative information (e.g. sound volume)

Temporal code. The firing rate is phase locked with the signal. The
neurons fire in volley.

Ensemble code. Only an ensemble of neurons can transmit specific

information.

At higher stages codes tend to be transformed into rate codes
(digitalized)



Schematic auditory
pathway
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FIGURE 1.1. Schematic diagram of the innervation of the human cochlea based
on the data of Nadol and his colleagues (Nadol, 1990; Nadol, Burgess, and Reisser
$990). The three rows of outer hair cells (OHCs) and one row of inner hair cells
HHCs) are shown for a short segment of one cochlear turn. Solid fibers are of
apiferent meurons and dashed fibers are of efferent neurons. Three Type I spiral
ganglion neurons (I) and one Type II spiral ganglion neuron (II) are shown. Type
{ cells comprise 88% and type II 12% of the afferent neurons. A single medial
plivocochlear bundle (OCB) fiber to outer hair cells and a single lateral olivo-
pochlear bundle fiber to type I spiral ganglion fibers are shown. SG, spiral ganglion.



FIGURE 2.1. Afferent nerve endings (A) near the base of an IHC in a squirrel
‘monkey. One afferent ending receives a synapse (arrow) characterized by a marked
“=ackening of the postsynaptic membrane and a presynaptic body surrounded by
2 halo of round vesicles. An efferent ending (E), filled with synaptic vesicles,
Sorms a synapse (arrowhead) on the afferent ending. Efferent endings do not
msually make synaptic contact directly with the IHC. Scale bar equals 1 pm. (This
micrograph is courtesy of Dr. R.S. Kimura.)



A e B S MO

E 2.2. Nerve endings at the base of an OHC of a rhesus monkey. The
nt nerve ending (A) is relatively small and the synaptic contact with the
cell (arrow) is characterized by a membrane thickening, a presynaptic body,
a few synaptic vesicles. The efferent ending (E) is typically large, filled with

tic vesicles, and makes direct contact with the outer hair cell. In addition
 the synaptic vesicles, the efferent ending opposes a long subsynaptic cystern
rowheads) inside the hair cell. Scale bar equals 1 pm. (This micrograph is
sy of Dr. R.S. Kimura.)
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Prof. Jonathan Ashmore - Lab Page
Rock around the clock Hair Cell.

The movie shows a short video of an outer hair cell being stimulated electrically by a
patch pipette which enters from the lower left. It was recorded one cold Saturday
morning for a BBC programme called ""Ear We Go" and originally broadcast on 13th
August 1987. | still have the holes in my equipment where they put the camera.

This is an outer hair cell microdissected from the low frequency (apical) end of the
cochlea and placed on the stage of a microscope. Cells such as this survive for a
couple of hours if kept in the right culture conditions. To change the cell's potential
and then make the cell change length | just played Rock-Around-the-Clock (Bill
Haley's 1954 classic) from my (then) Walkman into the input socket of the
electrophysiology amplifer. The BBC producer was delighted because even

then RAtC was so ancient that they did not have to pay copyright charges.

For the scientifically minded: This outer hair cell gets thinner when it gets longer and
fatter when it gets shorter. Measuring up these changes indicates that the cell volume
stays constant. This supports the idea that the ""'motor" is a molecule whose job it is to
change membrane area. The molecule, discovered in 2000 by Peter Dallos' Iab in the
US, is called "prestin".

videos_rockaroundtheclock.mpg
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5. Physiology of Thalamus and Cortex 241
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The tonotopic organization is
preserved through the whole auditory
pathway until the auditory cortex

auditory cortex of a cat.
Tonotopically organized
areas are shown in yellow

RE 5.2. (A) Lateral view of the cerebral cortex of cat showing the parcellation
ditory cortex. Auditory cortex contains four tonotopically organized fields:
mary field (AI), an anterior field (Field A; alternatively termed AAF, after
ht 1977), a posterior field (Field P or PAF),and a ventroposterior field (Field
r VPAF), (B) Further details of the frequency represented (high or low) at
orders of these fields, and extensions of them into the sulci, are shown in
stration of auditory cortex in which the sulci have been unfolded (sulcal
s shaded) and adjacent points on cortex have been split (thin dashed lines).
mnding the tonotopic fields is a belt of acoustically responsive cortex divided
bour regions that lack precise tonotopic arrangement: a second auditory area
| a dorsoposterior (DP) and ventral (V) field, and a temporal (T) area. Ab-
jations: aes, anterior ectosylvian sulcus; pes, posterior ectosylvian sulcus; pss,

sylvian sulcus; sss, suprasylvian sulcus. (From Imig and Reale, Journal of
Frative Neurology, 1980: Reprinted by permission of John Wiley and Sons,



Tonotopic organization of the auditory cortex of a
macaque

low frequencies

high frequencies



Rate coding. Normally there is a spontaneous firing rate and the signal is transmitted by a
change of this spontaneous rate, either by increasing or diminishing it.

T T |
77-09

DB SPL

sssss

T —
0125 025 05 1 2 4 8 16
FREQUENCY (KHZ)

Neural tuning curve of a chinchilla. The threshold of spl at which the firing rate starts
to deviate from the sponatneous one is displayed for different single neurons.

invasive measurement
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For animals in pristine conditions the tuning curves are much
narrower than for dead subjects.



Non-linearity

DISCHARGE RATE (PER SEC)

Neural response of a squirrel monkey to a tone of 6200 Hz at different spl

.0

1.2 1.4 1.6 1.8

nonlinear model

4 100



360 Hz (CF), 40 dB

301praat:sin30, sin720, sin720+360

360 und 720 Hz
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Loss of outer hair cells near the
stapes increases the threshold
and broadens the frequency
sensitivity in that region of the
cochlea. This is very well in line
with the outer hair cells as a
device to ""dedamp" the motion of

the bm.
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Temporal code
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firing rate of a neuron with CF 9450 to a tone with 9450 Hz (left) and 500 Hz (right)
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Back to hair cells

Hair cells fire only, if bm moves
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measured at chinchilla calculated with Greenwood
parameters for humans
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In a linear model the answer of the BM to a signal p(t) is
Y(x,7) = [dtp(t) B(z,T —t)

B(x.7) is the answer to a click:
Y (2, 7)click = [dto(t)B(x, 7 —t) = B(x,T)

we now form the integral (convolution)
c(t) = [dt' p(t")Y (z, 7 — ')
= [ [dt/ dtp(t") p(t) B(z, 7+t — 1)

with new variable t; =t — ¢
o(r) = [ dtydtp(t) p(ty + ) Bz, ™ + t1)

for stochastic noise: [dtp(t) p(t +1t1) = d(t1)

c(t) = [dt16(t1) B(z, 7 —t1) = B(x,7)

Measure answer to a noise, convolute with that noise, the resulting quantity is the answer to
a click (note that compressions and depressions vary stochstically in noise).



It really works
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Firing rates of
different nerves
with
deconvoluted
noise.
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optimal up-chirp: A signal with increasing frequency such that the bm is
excited at the same time

0.4508

A N /\ optimal up chirp
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0 0.015
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(\ AWa down-chirp

—0.5595
0 0.015

301praat up-chirp, down_chirp



301praat:sin500-1-5, sin500-2-5
The problem of pitch sensation
After Ohm-Helmholtz-Bekesy the problem of pitch sensation seemed solved by

the place theory : The pitch of a (complex) tone is determined by the position of
its (lowest) spectral component

A
I UVW“\J Vo o v o

O 0.01
Time (s)

The information of the pitch is transmitted by labled line coding to the

cortex.

New fact: Tracking of the fundamental. The pitch is perceived, even if
the characteristic part of the bm is not excited.

19

LU ANNRR
e - N O

0.01

Time (s)

This, together with the observed neural temporal encoding speaks for pitch
recognition as a temporal effect (Telephone theory of Rutherford)



Pro and contra temporal theory:

Pro: Fundamental tracking easily explained by temporal tracking: Period is always that of
fundamental, even if it is missing.

Contra: Phase independence of the sensation, e.g. Schroeder phase

Example ( a bit unfair with loudspeaker) : chopped noise
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301praat: chopped-noise, noise

realized as p(t) sin®(2wvt).
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Goldstein's pitch extractor:
Find harmonic series which approximates shifted series.

| ]
| ]
__fo+§| fo 1 fo fo fo
= == === ——
: : anharmonisch
fore|fore|io+e|for e fote fo+ ¢
harmonisch
he frequencies of the presented tone are vy, Vp, 11, ... Un;aky, then look for an harmonic tone
If the frequencies of the presented tone are v,,, vy, Uniaky, then look for an harmonic tone

with fundamental frequency v, such that the difference

ni+ki 9
A, = Z (L’m — (my + k1 — 1)%) (5.8)

k=n1
is minimal
In the simple case of a shifted harmonic tone the minimum of A can be determined analytically:

30k —6dmy —k —1wvg—2k? vy — 3kymyvg — 3kyny vy — 6myny 1
ki +2k% 4+ 6kimy +6m3

Ay(rp) = — (5.9)
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Extreme high pass filtering.

One cuts off so many lower harmonics, that the remaining ones can certainly not be
resolved on the bm.

Example: Extremely high pass filtered melody

301praat: melodie-cut-200, melodie-1-20,melodie-fundamentals



Kunst der Fuge, Spectrogram and pitch (ac)
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Abbildung 5.16: Spectrogram and pitch (PRAAT ac) the high passed beginning of the theme
of the Kunst der Fuge.



200 400 600 800 1000

signal and response



signal and response
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signal and response .
correlation
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signal and response
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signal p(t), r(t)

() = [dt'p(t") r(t' +7)

Closely related to convolution:

c(r) = [ [dt' dt" p(t")r(") o(t" —t' — T)

pxr(t) = [ [dt'"dt'p(t")r(t")o(t" +t —7)



FOor noise n(t)
1 T / / /
s7 J_pdt'p(t)n(t"+7) — O

for any signal p(t) (except for p(t) = n(t), the same
noise).

T herefore
[dt'p(t")Yr(t' + 7))+ n(t+7) — [dt'p(t")r(t' + 7)

For p(t) = n(t) we have: [dt'n(t") n(t'+ 1) = 6(7)

This brings us to autocorrelation:



Autocorrelation:

pac(t) = 57 [Lpdt'p(t) p(t' + )

In a coded world, the autocorrelation is easy to handle:

Be
{r1.p2; - PR - -}

the digitalized u'ersion of a function, i.e.

pn = p(x7) €.9.
then the autocorrelation is just the sum

Pac(k) = Y npn - Pn+-k-

This is fast on a computer, and presumably also in a
neural processor.
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Autocorrelation of the Schroeder-phase signal.

Pac(T) = % fTT dt'p(t") p(t' + 7)

Schroder phase:

p(t) = Z}P:l sin(27 (n 220t + T—;)



1.8¢

08t

I D‘DDS_ _J_i1_ i
)

-5

=10

-124

EERFLIV.VSVATNE ENVAVE.V.VVA VAL S

s ops

Coms (dm o016 doz

05¢

Zero phase

Ay

.02

p(t) = 210 | sin(2rn2201¢)

T=1

/v



B r ) r
oo VAP VYY) oo VAPV
Zero phase Schroder phase:
p(t) = 10 | sin(27rn2201¢) p(1) = T2, sin(2r (n 2201 + 1)

The period = = 1/v is the distance to the first maximum of the autocorrelation
function



No accident: The Wiener theorem states:
The autocorrelation function is the Fourier-transform of the power spectrum

Pac(t) = & [dv' e 2™ [5(27m1") |2

For a physicist, using the magic formula

. 2
f gt i )

27T

) f

and beeing a bit cavalier about the "infinite T" the proof is very simple:



Pac(t) = % fTT dt' p(t") p(t' 4 t) where T is big enough to apply the magic formula

p(t) = [dve P 5(2mp) = [ dv el2TVt 5% (27y)

T pac(t) = [dt’ [ dv 2™V (2mv) [ dv' e~ 2™ D F(2m0")
= [dt' [dv [dV'e 2mut! =2imv (t+t') 5+ (271) p(2m1)
= [dv [dv' (v — v)§(e™ 2"t 55 (271) p(271)

— ,rd,v o~ 2imv't 5 pr(2m) p(27r)) = ,rdfx o~ 2imv't |1mr(2”1',u")|2

ged



Hence no wonder that the autocorrelation function for the zero and Schroeder
phase are identical, since the power spectra are the same.

Hence all positive points for the spectra concerning phase independence can be
also applied for temporal coding, if the latter makes use of the autocorrelation
(J C R Licklider).

Though the direct definition of the autocorrelation is very convenient in a
digitalized world, it is for analytic calculations normally easier to start with the
power spectrum and Fourier transform it.



Consider the shifted harmonics under this aspect.

p(t) = > pcos[(v — (m + k)vg — )t]
p(2mr) = L5 6(v — (m4k)vp—8) + (v + (m+k)vg+6)]°
T he autocorrelation is given by:

Pac(t) = %fd.u e 2TV [6(v — (m 4+ K)vg — 8) +6(v + (m + K)vg + 8)]
10

= 1/25 . cos[2x((m + k)vg + §))i] 5

.001 *0.002 0.003" 0.00 .006

Autocorrelation of the unshifted and shifted
harmonic series. The period of the shifted harmonic
is a bit shorter than that of the unshifted



To the relief of the mathematical consience the following remark:
The Fourier transform of chopped noise contains delta-functions, how can you
square them. Answer:

We define ép(t) = [_pTe“tdw

The magic formula is limp_ . o7p(t) = 6(t)

One can in this sense show: M7 o 5 (57 (£))2 = 5(¢)



Optimal frequency for a shifted harmonic series as function of the shift delta
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To the relief of the mathematical consience the following remark:
The Fourier transform of chopped noise contains delta-functions, how can you

square them. Answer:
We define op(t) = [_pTe“tdw
The magic formula is limp_ . é7(t) = 6(¢t)

. ; . 1 ~ I
One can in this sense show: liMm7_ o 5707 (%)) = (%)
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If there is an ambiguity, one tends to hear the smaller interval. e.qg. if
there is an ambiguity between 4th and 5th one chooses the 4th

Deutsch's Tritonus paradox: There is no smaller interval for the
tritonus, which is half way between the octave.
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In case of pitch
ambiguity one
has the tendency
to choose the
smaller interval.
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A
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Huyghens noise (lterated rippled noise, IRN) 302praat: huygens.collection

Christian Huygens 16923 im Park von Chantilly

M W sound reflected from the first step
JL—\/ \/\/W + sound reflected from the second step etc

T= 2 * length of a step/ velocity of sound, yields nu= 1/T



INR with ¢ iterations and the gain factor ¢ 1s defined as

¢
pit) =>"d" plt + kA) (5.31)
k=0
The autocorrelation 1s given by
Pac _T[ dtz t—l—ﬁﬂ)Zg pt—l—t—l—k.&}
—0
¢
= > "t + (K - k)A) (5.32)
ke k! =0

There is a finite set of correlation times Tj , = (K'—k)A, that is times, where the autocorrelation
function has a maximum:

pHEE) = (6 +1)0(t) + g 05(t =) + ¢® (£ — 2)6(t — 2A) + . . . (5.33)

The nearest correlation time 1A determines the pitch 1/ = 1//A
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Abbildung 5.19: Spectra and autocorrelation functions of huygens noise with £ = 1 and with
¢ = 5 repetitions

praat: huygens.collection
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Huygens noise with positive gain (g=+1) and negative gain (g=-1) and 5 iterations
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Place (Bark)

Place (Bark)

cochleogram of unfiltered and high-pass filtered g=+1 and g=-1 noise, 1 iteration
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We come back to this question in the treatment of electrophysiology

Last item in this section: Pitch test of Smorenburg

302praat: 440 3 5,366_4_6
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Systematische Untersuchung der Psychoakustik,
Neurophysiologie und Anatomie

Structural and functional asymmetry of lateral
Hesch's gyrus reflects pitch perception preference
P.Schneider, V. Sluming, N. Roberts, M. Scherg, R.
Goebel, H.J. Specht, H.G. Dosch, S. Bleeck, C.
Stippich, A. Rupp
nature-neuroscience, 8 (2005) 1241-1247
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