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Chapter 1

The Heroic Time

In this appendix I use, unless otherwise stated, natural units, that is h̄ = c = 1 and energy
includes the rest energy; the mass is always the invariant (rest) mass.

1.2 Brave Old World

In order to determine the ratio of the electric charge of an electron to its mass, e/m, one p. 7
uses both the effect of the Coulomb force of the electric field E and of the Lorentz force
of the magnetic field B:
The Coulomb force is : K = eE in direction of the E field
the Lorentz force is : K = e v

c
B, it is perpendicular to the direction of the velocity v of

the charged particle and the magnetic field B.
Like always, c is the vacuum velocity of light.

•The Rutherford scattering formula for particles of mass m, of charge e and of velocity p. 9f
v (v ≪ c) at a heavy nucleus of charge Ze is :

dσ

dΩ
=

Z2e4

4m2v4 sin4(θ/2)
(1.1)

where θ is the scattering angle.
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1.3 Detection of Particles

The energy loss by ionization per unit length of a particle with charge e, mass m and p. 16ff
velocity v is given by the semiclassical formula:

dE

dx
≈ Kz2Z

A

c2

v2

(

1

2
log

2me v
2 Tmax

I2(1 − v2/c2)
− v2

c2
− δ

2

)

(1.2)

Here Tmax is the maximum kinetic energy which can be imparted to a free electron in a
single collision, z is the charge of the ionizing particle (in elementary units), v its velocity, I
is the mean excitation energy, A is the molecular weight (g/mol) of the stopping material,
K = 0.307 MeV cm2 / g, me is the elctron mass and δ a material constant taking care of
polarization effects.

For small velocities, (v ≪ c), the ionization density is inversely proportional to the
square of the velocity and thus allows to measure the latter. If one knows also the
momentum of the particle, e.g. from the curvature of the trajectory in an magnetic field,
on can determine the mass of the ionizing particle from momentum and velocity.

For large velocities (v ≈ c) the energy dependence is weak.

The Mean energy loss rates for different materials are displayed in Figure 1.1

1.4.1 Special Relativity and Quantum Physics

The 4 vectors play in the 4 dimensional relativistic space-time continuum the same role p. 22f
as usual 3 vectors in three dimensional space.

a = (a0, a1, a2, a3). (1.3)

Space and time coordinates form together a 4 vector:

x = (x0 = xt, x1, x2, x3) (1.4)

The scalar product of two 4 vectors is:

a.b = a0b0 − a1b1 − a2b2 − a3b3 (1.5)
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Figure 1.1: Mean energy loss by ionization in different materials, From Particle Data
Group, Figure 27.3
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It can be expressed with the metric tensor (4 × 4 matrix):

gµν =











1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1











. (1.6)

a.b =
3
∑

µ,ν=0

aµbνgµν (1.7)

(Stricly speaking it is a pseudo-metric tensor, since it is not positive definite. A bit of
matrix algebra will be explained below equation (1.28) ff)

Loke the rotations in three dimensional space, Lorentz transformations leave the 4 dimen-
sional scalar product unchanged.

Energy E and momentum ~p = (p1, p2, p3) form together a 4 vector:

p = (E/c = p0, p1, p2, p3), (1.8)

The scalar product of p with itself is the product of mass and the square of the vacuum
velocity of light:

p.p = E2/c2 − ~p 2 = m2c2 (1.9)

The relation between energy E, 3 momentum ~p and velocity ~v of a particle with mass m
is therefore:

~p =
m~v

√

1 − v2/c2
; E =

mc2
√

1 − v2/c2
(1.10)

• The free Dirac equation (that is without electromagnetic interaction) is: p. 24
(

γ0
∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3
−mc2

)

u(~x, t) = 0 (1.11)

where the γ matrices are 4 × 4 matrices with the following properties:
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γµ · γν + γν · γµ = 2gµν . (1.12)

The γ matrices can be constructed from the 2 × 2 spinor matrices σk (see 1.40) and the
2 × 2 unit matrix 1:

γ0 =

(

1 0

0 −1

)

=











1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1











γk =

(

0 σk

−σk 0

)

(1.13)

The spinor u(~x, t) has 4 components

u(~x, t) =











u1(~x, t)
u2(~x, t)
u3(~x, t)
u4(~x, t)











(1.14)

The Dirac equation with electromagnetic interaction will be derived in (5.5).

1.4.2 Field Theory and Quantum Physics

In the following it is convenient to introduce the commutator: p. 28f

[A,B] = AB −BA (1.15)

and the anticommutator :
[A,B]+ = AB +BA (1.16)

For the creation and annihilation operators of bosons (particles with integer spin) holds:

[a(~x, t), a∗(~y, t)] = δ(~x− ~y), [a(~x, t), a(~y, t)] = [a∗(~x, t), a∗(~y, t)] = 0 (1.17)
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Figure 1.2: Diagramm for the exchange of a (scalar) particle with mass m

For fermions (particles with half-integer spin) the commutator [, ] is replaced by the an-
ticommutator [, ]+.

• The complete form of the interaction s. (5.5) of a spin-1
2

particle with an electromagnetic p. 30
field is:

LWechselwirkung = e2ψ∗(~x, t)γ0

(

γ0A0(~x, t) −
3
∑

k=1

γkAk(~x, t)

)

ψ(~x, t) (1.18)

where A0 is the electric and ~A the magnetic (vector) potential, e is the charge and ψ the
spinor field of the particle.

• An inner line of a quantum field of mass m, the so called propagator, gives rise to p. 32ff
a factor: 1/(p2 − m2c2),where p is the 4 momentum flowing through the inner line, see
Figure 1

The exchange of a particle with mass m gives therefore rise to a factor: p. 34

1

(p− p′)2 −m2c2
(1.19)

where p and p′ are the 4 momentum before and after the exchange, respectively.

By Fourier transformation on obtains from this exchange term for small velocities – that
is in the nonrelativistic limiting case – the following exchange potential:

V (r) ∼ e−rmc/h̄/r (1.20)

7



with r = |~x |
For the photon, which has invariant mass zero (m = 0) this yields the well known Coulomb
potential, for mesons with mass m 6= 0 the formula yields the Yukawa potential with the
range r0 = h̄/(mc)

The factor 1
(p−p′)2

,which occurs for the exchange of a photon gives rise to the term 1/ sin4 θ
2

in the formula for Rutherford scattering (Eq. 1.1).

• To the quantum correction of figure 1.16a (self energy) corresponds the divergent inte- p. 36
gral:

e2u∗(p)γ0
∫

d4k
−γ.q +m

(q2 −m2)k2
u(p), q = p− k (1.21)

where u(p) is the spinor of an electron with 4 momentum p ist, e is the charge and m
the mass of the elctron; γ.q is the scalar product of the γ matrices with the 4 momentum
q = p − k, in units h̄ = 1 und c = 1. The term q2 −m2 in the denominator stems from
the internal, that is virtual, electron line, the term k2 from the internal photon line.

• Thomson had already calculated in 1904 the cross section for scattering of light off p. 37
electrons. Of course he considered the flux not as flux of particles but as energy flux. It
is however easy to convert the two fluxes into each other, since a single photon has the
energy h̄ω = hν.

The Thomson cross section is:

σ =
8π

3
r2
0, r0 =

e2

mec2
. (1.22)

The quantity r0 = 2.8 . . . · 10−15 m is called the classical electron radius: A charge distri-
bution with extension r0 leads to an electrostatic energy which is the rest energy of the
electron, mc2 = 0.511 . . . MeV.

The graphs of figure 1.9 lead in the limit of vanishing photon momentum to the classical
cross section 1.22, if one inserts for the charge e the classical charge. In this limiting case
the higher order corrections do not contribute.

1.4.3 Quantum Physics and Errors
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Though quantum mechanics is a deterministic theory, it predicts for the outcome of p. 39
measurements only probabilities, that is the results of measurements show in general
fluctuations.

A general results of mathematical statistics is: Is p the probability that an event x occurs
and if there are N possibilities that the event may occur, then the probability distribution
of the measured values x is the ‘binomial distribution’:

WB(x) =
N !

x!(N − x)!
px (1 − p)N−x (1.23)

In our example that means: Is N the total number of unstable particles and p the proba-
bility for the decay of a particle in one second, then WB(x) is the probability that in one
second x decays are registered (under the assumption that each decay is registered).

For the important special case that p is very small andN very big the binomial distribution
WB(x) becomes a ‘Poisson distribution’:

WB(x) =
Nx px

x!
(1.24)

Near the mean value x̄ = pN the Poisson distribution can be approximated by a Gaussian
(or normal) distribution:

WG(x) =
1√
2πσ

exp(x−x̄)2/(2σ2) (1.25)

mit σ =
√
x̄

σ is called the standard deviation. With x̄− σ ≤ x ≤ x̄+ σ. If we want to calculate the
probability p from the quotient of the observed decays, one has to take into account that
this probability p is with a probability of 1/3 outside the interval (x+σ

N
, x−σ

N
).

The binomial distribution for the case N = 1000, p = 0.1 is shown in figure 1, solid line,
also shown is the corresponding Gaussian distribution (dashed line).
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Figure 1.3: Binomial distribution (solid line) and Gaussian distribution (dashed line) for
N = 1000, p = 0.1

Even if we can calculate exactly the probability p for an event, the results of measurements
will nevertheless deviate from this value due to the above mentioned fluctuations. In order
to compare theory with experiment on has to take into account this fluctuations. Since
the standard deviation is σ =

√
pN one obtains, with pN ≈ x :

p =
(x±√

x)

N
. (1.26)

The absolute standard error is thus: ∆p =
√

x
N

, the relative error which is in general the
relevant quantity is then:

∆p

p
=

1√
x
. (1.27)

This shows that thew error decreases with the number of measured events, but unfortu-
nately only with the square root. In order to increase the precision by a factor of 100 one
needs 10 000 times more events.

1.5.1 Symmetries and Transformations

A group is a set G of elements,a, b, . . ., for which there exists a composition law a ◦ b with p. 41ff
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the following properties (the composition law is generally called multiplication and hence
the reult of the composition product):

1. With a and b also the product a ◦ b is element of the group

2. There exists exactly one 1-Element with 1 ◦ a = a ◦ 1 = a for every a.

3. To each element a there exists exactly one inverse element designated as a−1, with
the property a ◦ a−1 = a−1 ◦ a = 1.

4. The composition is associative: a ◦ (b ◦ c) = (a ◦ b) ◦ c

Very often the composition, indicated above by ◦ is indicated just by juxtaposition, a◦b ≡
a b.

• Matrices: A general n× n matrix is the quadratic scheme: p. 43ff

A = (aik) =



















a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n
...

...
... . . .

...
an1 an2 an3 . . . ann



















(1.28)

The unit matrix is

1 = (δik) =



















1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
...
. . . 1



















(1.29)
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The compostion law (product) for two matrices is:

AB =



















∑

i a1ibi1
∑

i a1ibi2
∑

i a1ibi3 . . .
∑

i a1ibin
∑

i a2ibi1
∑

i a2ibi2
∑

i a3ibi3 . . .
∑

i a2ibin
∑

i a3ibi1
∑

i a3ibi2
∑

i a3ibi3 . . .
∑

i a3ibin
...

...
... . . .

...
∑

i anibi1
∑

i anibi2
∑

i anibi3 . . .
∑

i anibin



















(1.30)

The sum in
∑

i goes from i = 1 to n. As we can see, the product of two n× n matrices is
again an n× n matrix.

The matrix A applied to an n-dimensional vector v yields again a vector:

v =



















v1

v2

v3
...
vn



















; A v =



















∑

i a1ivi
∑

i a2ivi
∑

i a3ivi
...

∑

i anivi



















(1.31)

The adjoint matrix A∗ is defined as the complex conjugate and transposed of matrix A.

A∗ = (a∗ki) =



















a∗11 a∗21 a∗31 . . .
a∗12 a∗22 a∗32 . . .
a∗13 a∗23 a∗33 . . .
...
. . . a∗nn



















(1.32)

For a real matrix the adjoint matrix is the transposed matrix.

A matrix U with real or complex components is called unitary if

U−1 = U∗ (1.33)
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The matrix representing the rotation by an angle θ in the plane is

Dθ =

(

cos θ sin θ
− sin θ cos θ

)

(1.34)

The rotated vector v′ of v = (
v1

v2
) is:

v′ =

(

cos θ v1 + sin θ v2

− sin θ v1 + cos θ v2

)

(1.35)

Two successive rotations by the angles θ und φ respectively yield the matrix:

DφDθ =

(

cos θ sin θ
− sin θ cos θ

) (

cosφ sinφ
− sin φ cos φ

)

(1.36)

=

(

cos θ cosφ) − sin θ sinφ sin θ cos φ+ cos θ sinφ
− sin θ cos φ− cos θ sinφ cos θ cos φ− sin θ sinφ

)

=

(

cos(θ + φ) sin(θ + φ)
− sin(θ + φ) cos(θ + φ)

)

The product is the rotation matrix with the angle θ + φ (that the resulting angle is just
the sum of the two angels is special for the plane).

For the rotation matrices holds:

D∗ =

(

cos θ − sin θ
sin θ cos θ

)

= D−θ = D−1 (1.37)

This property is characteristic for rotations, it guarantees that the length of a vector and
the angle between two vectors is not changed.

1.5.2 The Miracle of Spin

• Stricly speaking, the operators of angular momentum are the generators of rotations in p. 45f
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three-dimensional space multiplied by h̄.

A rotation around the z axis by the angle φ can be represented with the help of the
generators by:

eiφLz (1.38)

The exponential function of an operator can e.g. be defined by a power series:

eiLzφ = 1 + iφLzφ+ (iφLz)
2/2 + (iφLz)

3/6 + . . . (1.39)

The generators of SU(2), s1, s2, s3 are given by the Pauli matrices σ:

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

(1.40)

that is: sk = 1
2
σk, k = 1 . . . 3.

One checks directly the commutation relations:

s1 s2 − s2 s1 =is3 (1.41)

The rotation matrix for a spinor around the z axis is given by:

eis3φ =

(

cos φ
2

+ sin φ
2

0

0 cos φ
2
− sin φ

2

)

(1.42)

For φ = 360◦ one has cos(φ/2) = −1 and sin(φ/2) = 0, that is for a rotation by φ = 360◦

one obtains that the rotation matrix of a spinor around the full circle is the negative of
the unit matrix! This means under a rotation by a full circle a spinor does not come back
into its old state but changes its sign. The consequences of this counterintuitive result
have been checked in experiments.
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1.6 The Discovery of the Positron and the ‘Mesotron’

Let a charged particle of mass m charge e move with momentum ~p in an homogeneous p. 53
magnetic field ~B. The following equation of motion holds:

d~p

dt
=
e

c
[~v × ~B], |~p | = konstant (1.43)

For velocities perpendicular to the magnetic field the reulting solution is a circular tra-
jectory with radius

R = c|~p |/(eB). (1.44)

Therefore the momentum can be determined from the radius R.

1.7 Early Accelerators

For v ≪ c follows from 1.44 p. 59
R =

mvc

eB
, (1.45)

and for the frequency f = v/(2πR)

f =
eB

2πmc
, (1.46)

that is the frequency is in nonrelativistic approximation independent of velocity and hence
of energy.

The following relation holds for all velocities:

v = pc2/E (1.47)

where E is the total energy of the particle. Hence the frequency is in general:

f =
ecB

2πE
, (1.48)

that is it decreases with increasing energy (Note: in nonrelativistic approximation the
total energy is just the rest energy).
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Chapter 2

The Great Leap Forward

2.4 Successes and Failures of Quantum Field Theory

The interaction term of a nucleon with a pi meson is: p. 75

Linteraction = gπNψ
∗(~x, t)γ0γ

5ψ(~x, t)φ(~x, t) (2.1)

where gπN is the pi-meson-nucleon coupling and φ the quantum field of the pi-meson, for
the matrix γ5 s. (2.2). The coupling constant has approximately the value g2

πN/(4π) ≈ 14,
which is very large with the electromagnetic coupling e2/(4π) ≈ 1/137 in QED.

The so-called γ5 matrix is the product of the 4 γ matrices introduced in (1.13):

γ5 = iγ0γ1γ2γ3 (2.2)

It occurs in the interaction term, since the pi meson is a pseudoscalar particle, that it its
quantum field changes sign under space reflection.

2.7 More and More New Particles

The x-axis of figure 2.13 is the ‘invariant mass’ of the two produced pi-mesons mπ+π− . p. 87

m2
π+π−c2 = (p′π+ + p′π−)2 (2.3)
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s. (1.10)

2.8 The Surprises of the Weak Interaction

2.8.1 Digression: Right- and Left-Handed Particles

The relation between Weyl- and Dirac spinors is given through the γ5 matrix (2.2): p. 92f

χrechts =
1 + γ5

2
ψDirac, χlinks =

1 − γ5

2
ψDirac (2.4)

χ are left and right-handed Weyl spinors respectively and ψ is a Dirac spinor.

2.8.2 And Now Back to Weak Interactions

In weak interactions only left handed fermions(and right handed antifermions) participate, p. 94f
that is the factor (1−γ5)ψ occurs in the interaction. This implies for the interaction term
of mu-decay (µ → e+ νe + νµ):

Linteraction = GF

3
∑

ρ=0

(

ψ∗
eγ

0(1 − γ5)γρψνe

)(

ψνµ
γ0(1 − γ5)γρψµ

)

(2.5)

where the indices at the fields ψ indicate which particles they describe, ψνe
e.g. is the

field of the electron neutrino and its antiparticle; GF is the weak coupling (Fermi coupling
constant)

The expression ψ∗
eγ

0(1 − γ5)γρψνe
is called a ‘charged weak V − A current”. It is called

charged since it changes the charge (from neutrino to electron), weak since it occurs in
the weak interaction, and V −A since the part ψ∗

eγ
0γρψνe

behaves as a normal vector (V )
and the part ψ∗

eγ
0γ5γρψνe

like an axial vector (A).

• For CP violation one makes the ansatz: p. 96

KS = pK0 + qK̄0, KL = pK0 − qK̄0 (2.6)

where p/q− 1 is a measure for the CP violation. The measured value for it is very small
p/q − 1 ≈ 0.001. This implies that CP symmetry is only very weakly violated.
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Chapter 3

Up by Their Own Bootstraps

3.2 Scattering Amplitudes

The cross section is determined from the scattering amplitude T as p. 100

σ =
1

F
|T |2dΓ, (3.1)

where F is the particle flux and dΓ the phase space factor.

In the rest system of the target particle holds:

F = mt(Es −ms), (3.2)

where Es and ms are energy and mass of the scattered particle, mtis the mass of the
target particle.

The phase space factor dΓ is the measure of all components of the 4 momenta of the final
states with the restriction that the squares of the single momenta are the rest masses of
the particles and that the total final momentum is equal to the total initial momentum
ptot. For N particles in the final stae one has:

dΓN = δ4

(

N
∑

i=1

p(i) − ptot

)

N
∏

i=1

d4p(i) δ(p(i) −m2) (3.3)
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• Very sketchily one can illustrate the consequences of unitarity as follows: Unitarity p. 105
implies that the product of the S matrix with its adjoint is equal to the unit matrix.

S†S = 1 (3.4)

If the S matrix is equal to the unit matrix this means that the state remains unchanged by
the scattering process, that is nothing has happened at all. If we subtract the unit matrix
from the S matrix we obtain its interesting part, the scattering amplitude, normally called
T matrix

T = (S − 1)/i

(the division by the imaginary unit i is pure convention). The cross section is proportional
to |T |2, as noted above.

From unitarity (3.4) follows:

1 = S†S = (1 + iT )(1 − iT †) = 1 + i(T − T †) + TT † (3.5)

oder

TT † =
1

i
(T − T †) (3.6)

From the last equation follows the optical theorem, it states that the total cross section is
equal to the imaginary part of the scattering amplitude in forward direction. For actual
calculations one has of course also to take into account the phase-space factor dΓ.

• In the following be W the total energy and θ the scattering angle in the center of p. 102
momentum frame, that is in a frame in which the sum of the 3 momenta of the colliding
particles is zero.

For pi meson nucleon scattering one obtains for energies and momenta of the single par-
ticles (book, Figure 3.2.a):

|~pπ|2 = |~pp|2 =
1

4W 2

√

[(W 2 − (mp +mπ)2][W 2 − (mp −mπ)2] (3.7)

Ep =
1

2W

√

W 2 +m2
p −m2

π, Eπ =
1

2W

√

W 2 +m2
π −m2

p. (3.8)
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The Mandelstam variables are:

s = (pπ− + pp)
2 = (pπ−

′ + pp
′)2 = W 2, (3.9)

t = (pπ− − pπ−

′)2 = (pp − pp
′)2 = −2~pπ

2(1 − cos θ) (3.10)

For proton-antiproton annihilation into two pi mesons holds (figure 3.2 b ):

|~pπ| =
1

2W

√

W 2 − 4m2
π, |~pp| =

1

2W

√

W 2 − 4m2
p (3.11)

Ep = Eπ =
W

2
(3.12)

The Mandelstam variables for this annihilation process are:

t = (pp + pp̄)
2 = (pπ− − pπ+)2 = W 2 (3.13)

s = (pp − pπ+)2 = (pp̄ − pπ−)2 (3.14)

= m2
p +m2

pi −
1

2

(

W 2 −
√

[W 2 − 4m2
p][W

2 − 4m2
π] cos θ

)

The graph of book, Figure 3.2.c has for pi-meson nucleon scattering the singularity (pole),
compare (1):

1

s−m2
n

=
1

(pπ + pp)2 −m2
n

=
1

W 2 −m2
n

. (3.15)

For the annihilation of a proton and an antiproton the pole term is, see 3.13):

1

(pp − pπ+)2 −m2
n

=
1

m2
p +m2

π − 1
2

(

W 2 −
√

[W 2 − 4m2
p][W

2 − 4m2
π] cos θ

)

−m2
n

(3.16)

where now W refers to the center of momentum system of the proton and antiproton.

3.4 Rigorous Theorems and Complex Angular Momenta

From axiomatic field theory follows for the total cross section of two hadrons the rigorous p. 107
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Froissart-Martin limit:

σ ≤ π

m2
π

(

log(W 2/W 2
0 )
)2
, (3.17)

W0 is not determined in the theorem.

• The decisive step for the analytic continuation of the angular momenta consists in p. 108
converting the infinite sum over partial waves into an integral and then deforming the
integration path in order to obtain a finite sum over pole terms.

• The Veneziano amplitude for scattering of two equal particlesof mass m is: p. 109

A(s, t) = B(−α(s),−α(t)) +B(−α(s),−α(u))B(−α(t),−α(u)) (3.18)

where the Euler Beta function B(x, y) is given by the Gamma functions:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(3.19)

and u = 4m2 − s− t, and α(s) = α. s+ α(0) is the Regge trajectory

This amplitude exhibits poles if the trajectories take integer values, e.g. if α(s) = n, since
the Gamma function has a pole for negative integer values. The amplitude (3.18) has also
the correct asymptotic behavior as can be checked by using the Stirling formula for large
z for the Gamma function:

Γ(z) ∼ e−zzz−1/2
√

2π (3.20)
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Chapter 5

On the Path to the Standard Model

5.1 The Master of the Gauge

If a wave function of quantum physics is multiplied by a phase factor, that is a constant p. 134
complex number with modulus 1, it describes still the same physical state. The phase
factors eiλ, λ real, are by definition the elements of the group U(1), therefore a more
learned and mathematically precise formulation for the statement on the wave function
made above is: Quantum mechanics is invariant under transformations of the group U(1).

Weyl regarded it as highly implausible that the λ in the phase factor has to be strictly
constant, even if the wave function is extended over a very large region of space. In analogy
to general relativity he called this property a ‘parallelism at a distance’ (Fernparallelismus)
which he rejected. Here therefore postulated that quantum mechanics remains invariant,
even if the phase factor is space and time dependent, that is if the wave function is
multiplied by eieλ(~x,t) .

The rejection of the parallelism at a distance implies: The wave function u(~x, t) and the
‘gauged’ wave function eiλ(~x,t)u(~x, t) must describe the same physical state. At a first
glance this seems wrong: The wave function u(~x, t) of a free (that is noninteracting) spin
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1
2

particle satisfies the linear Dirac equation (1.11):

(

γ0
∂

∂x0

+ γ1
∂

∂x1

+ γ2
∂

∂x2

+ γ3
∂

∂x3

−mc2
)

u(~x, t) = 0 (x0 = ct) (5.1)

It plays in this context no role that the quantities γρ are 4 × 4-matrices; if you dislike
matrices it does for these considerations no harm to take the γ matrices as numbers

If the gauge transformation

u(~x, t) → u′(~x, t) = eieλ(~x,t)u(~x, t) (5.2)

is performed the transformed wave function u′(~x, t) does no longer satisfy the Dirac equa-
tion (5.1), that is inserted in the Dirac equation u′ yields no longer zero. This can be
easily checked by inserting u′ into equation (5.1) and applying Leibniz’s rule:

(

γ0
∂

∂x0
+ γ1

∂

∂x1
+ γ2

∂

∂x2
+ γ3

∂

∂x3
−m

)

u′(~x, t) (5.3)

=

(

γ0[
∂

∂x0

u(~x, t) + i e u(~x, t)
∂

∂x0

λ(~x, t)]

+ γ1[
∂

∂x1
u(~x, t) + i e u(~x, t)

∂

∂x1
λ(~x, t)]

+ γ2[
∂

∂x2
u(~x, t) + i e u(~x, t)

∂

∂x2
λ(~x, t)]

+ γ3[
∂

∂x3
u(~x, t) + i e u(~x, t)

∂

∂x3
λ(~x, t)] −mu(~x, t)

)

eiλ(~x,t)

=

(

γ0
∂

∂x0
λ(~x, t) + γ1

∂

∂x1
λ(~x, t) + γ2

∂

∂x2
λ(~x, t) + (5.4)

γ3
∂

∂x3

λ(~x, t)

)

i e u(~x, t) 6= 0

In order to get rid of this term we must introduce an additional field and modify the free
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Dirac equation to:

(

iγ0[
∂

∂x0

+ ieA0] + γ1[
∂

∂x1

+ ieA1] + γ2[
∂

∂x2

+ ieA2] (5.5)

+ γ3[
∂

∂x3

+ ieA3] −m
)

u(~x, t) = 0

If the wave function is gauge transformed according to 5.2 and simultaneously the newly
introduced 4-vector field (A0, ~A) is transformed according to:

Aρ(~x, t) → A′ρ(~x, t) = Aρ(~x, t) − ∂

∂xρ

λ(~x, t), ρ = 0 . . . 3, (5.6)

on can check easily that u′(~x, t) and A′(~x, t) are solutions of eq. 5.5, if this is also the case
for u(~x, t) and A(~x, t).

The transformation 5.6 is just the time honored gauge transformation of the 4 potential in
electrodynamics, consisting of the electric potential A0 and the magnetic vector potential
~A, the equation (5.5) is the Dirac equation for a charged particle in an electromagnetic
field. This is the equation with the help of which Dirac could explain the fine structure
of the hydrogen atom and the correct gyromagnetic ratio of the electron.

We see: If we postulate the invariance of the Dirac equation under the gauge transfor-
mation (5.2), the the existence of the electromagnetic field and the form of the equation
(5.5) describing its interaction with an electrically charged particle is a consequence of
this postulate.

The electric and magnetic field strength is not influenced by the gauge transformation of
the potentials (5.6) As an example consider the 1 component of the electric ( ~E):

E ′1 =
∂

∂x1

A′0 − ∂

∂x0

A′1 =
∂

∂x1

A0 − ∂2

∂x1∂x0

λ− ∂

∂x0

A1 +
∂2

∂x0∂x1

λ = E1 (5.7)

Let us summarize. In quantum physics U(1) symmetry holds: If the wave function is
multiplied by a constant phase factor, the physical state remains unchanged. If one
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‘gauges this symmetry’, that is one postulates that invariance still holds if the phase
factor is space-time dependent then this postulate of gauge invariance has far reaching
consequences: There must exist a new field, the so called gauge field and the interaction
of this new field with the particles is also determined – at least in its minimal form.

5.2 New Dimensions for the Gauge

The transformations of the group SU(2) are generated by the Pauli matrices σk (1.40), p. 138
that is an isospinor χ is transformed according to:

χ→ χ′ = eig
∑

k
λkσkχ (5.8)

where the sum runs from 1 . . . 3, g is the SU(2) gauge coupling.

The group SU(2) is gauged by making the three real coefficients λ1, λ2, λ3 space-time
dependent:

χ→ χ′ = ei
∑

k
λk(~x,t)σkχ (5.9)

Because there are three generators in SU(2), one has to introduce in the process of gauging
this symmetry three gauge-4-potentials, namely: A0

(i), A
1
(i), A

2
(i), A

3
(i)), i = 1, 2, 3.

The analogues of the electric and magnetic fields are in such a ‘non-Abelian’ gauge theory
more complicated than in electrodynamics. For the 1-component of the first of three
‘electric’ fields one obtains:

E1
(1) =

∂

∂x1
A0

(1) −
∂

∂x0
A1

(1) + ig(A1
(2)A

0
(3) −A0

(2)A
1
(3)) (5.10)

The additional nonlinear term ig(A1
(2)A

0
(3) − A0

(2)A
1
(3)). is responsible for the interaction

of the gauge bosons (Book, Figure 5.34 und b) among themselves.

5.3 Spontaneous Symmetry Breaking

As mentioned in the book we combine the two fields F1 and F2 to a complex field: p. 146

F (~x, t) = F1(~x, t) + iF2(~x, t). (5.11)
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The static field energy is then easily expressed as:

V (F ) = MF (~x, t)∗F (~x, t) + g
(

F (~x, t)∗F (~x, t)
)2

(5.12)

where the asterisk ∗ indicates complex conjugation.

The complex field F (5.11) can be decomposed into modulus η(~x, t) and the phase (argu-
ment) ζ(~x, t) :

F (x) =
1√
2
(η(~x, t) +

√
2 v) exp

[

i
ζ(~x, t)√

2v

]

(5.13)

where we have shifted the field by v =
√

−M/(2g) in order to have the minimum of the

static energy (5.12) at η = 0. From the decomposition (5.13) follows:

F (~x, t)∗F (~x, t) =
1

2
(η(~x, t) +

√
2 v)2 (5.14)

and we obtain after an elementary calculation:

V = −Mη2 + η3
√

−Mg +
g

4
η4 − M2

2g
. (5.15)

In this expression for the static field energy the field ζ does no longer appear, especially
there is no mass term for this field. Indeed, the field ζ(~x, t) is the field of the massless
Goldstone boson. The ζ field appears, however in the kinetic contribution to the field
energy and also shows a characteristic interaction with the η field. The field η has the
positive mass term −Mη2 (note that M is negative).

If we perform a perturbative expansion in the coupling g we find the following particle
content:

1. A massless boson, the Goldstone boson described by the field ζ

2. A boson with mass
√
−M , the so called Higgs boson, described by the field η.
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5.4 The Higgs-Kibble Dinner

If the U(1) symmetry of the considered model is gauged by making the phase factor p. 147
transforming the field F space-time dependent then we have to add the gauge potential
Aµ. This gives an additional term to the static field energy:

e2
3
∑

µ=0

Aµ(~x, t)A
µ(~x, t)F (~x, t)∗F (~x, t), (5.16)

i.e. we have instead of the expression (5.12):

V (F ) = MF ∗F + g
(

F ∗F
)

+ e2
∑

µ

AµA
µF ∗F (5.17)

where we have written F for F (~x, t) etc. .

If we substitute F by η and ζ according to (5.13)we obtain:

V = −Mη2 + η3
√

−Mg +
g

4
η4 − M2

2g
+ e2

∑

µ

AµA
µ

(

1

2
η2 +

√

−M
g

η +
−M
2g

)

. (5.18)

Now we have also a quadratic term in the gauge potential, namely −M
2g

e2
∑

µAµA
µ. This

is a mass term and the gauge field has acquired the mass

mA =
−M
2g

e2.

In the equations there occurs still formally the field ζ of the Goldstone boson, but now
we can ‘gauge it away’: If we make the gauge transformation, see (5.2,5.6) we obtain:

F → e−iζ/
√

2vF, Aµ → Aµ +
∂

∂xµ

ζ√
2ve

. (5.19)

The gauge transformation eliminates the field ζ completely from eq. (5.13), but physics
is not changed, since the performed transformation is a gauge transformation.
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5.6 Better Counters, Better Accelerators, and Better Beams

The total energy W in the center of mass (center of momentum) system (CMS) is given p. 152
by: W 2 = s = (p1 + p2)

2. In the lab system (target at rest) the 4-momentum vector of
the target is p1 = (m1,~0 ) that is we have for the total energy:

W = m2
1 +m2

2 + 2
√

m1E2. (5.20)

The total energy in the CMS increases in the lab system only with the square root of the
energy of the accelerated particle.

If both particles are accelerated, with opposite 3-momentum, ~p1 = −~p2, then the total
energy in the CMS increases lenearly:

W = E1 + E2. (5.21)

5.7 The Electron Microscopes of Particle Physics

In an elastic collision of two particles the maximum momentum transfer is given by: p. 157

|Q| ≤ 2|~p ∗| (5.22)

where ~p ∗, the momentum in the CMS, is given by s. (3.7):

|~p ∗| =

√

(W 2 − (m1 +m2)2)(W 2 − (m1 −m2)2)

4W 2
. (5.23)

Here W is the total energy in the CMS.

For relativistic particles one can neglect the small mass terms and one has approximately

|Q| ≤W. (5.24)

This is the reason why one needs high energies in order to resolve small structures.

5.8 Deep Inelastic Scattering
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For the analysis of deep inealstic scattering the optical theorem is very important. The p. 162
lower part of the graph of book, Figure 5.15 can be regarded as the scattering of a virtual
photon on protons, the upper part is known from quantum electrodynamics. Therefore
on can say that in deep inelastic scattering one measures the total cross sections for the
scattering of a virtual photon on a proton. This total cross section is proportional to
the imaginary part of the forward scattering amplitude which in turn can be analyzed
theoretically.

The details of the treatment of deep inelastic scattering are very complicated. Because
of spin and the different currents (electromagnetic and weak) one has three structure
functions. In order to determine them one has to make detailed measurements with
charged and neutral leptons (electrons, muons, neutrinos, and their antiparticles).
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Chapter 6

The Standard Model of Particle

Physics

6.3 Weak Currents

The doublet of quarks , corresponding to the doublet of leptons (Fig 6.2) is: p. 171f

(

u
d cos θC + s sin θC

)

(6.1)

To the doublet of the muon and ist antineutrino corresponds:

(

c
s cos θC − d sin θC

)

(6.2)

Here u, d, s, c stands for up, down, strange and charmed quark, θC is the so called Cabbibo
angle.

6.5 Running Coupling and Asymptotic Freedom

The running of the coupling follows from the equation: p. 183f
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approximate number of active Λ(nf )

energy range quark flavors
µ (GeV) nf (MeV)
> 200 6 88 ± 11

10 − 200 5 208 ± 25
3 − 10 4 288 ± 30
< 3 3 326 ± 30

Table 6.1: Numerical values of the active flavors nf and of the ACD scale ΛQCD

µ
∂αs

∂µ
= 2β(αs) (6.3)

where µ is the energy scale, that is µ is inversely proportional to the distance scale. If
the quantity β(αs) is negative then αs decreases with increasing µ and correspondingly
decreases with decreasing distance. The theory is then called asymptotically free.

In perturbation theory on can calculate β:

2β(αs) = −β0

2π
α2

s −
β1

4π2
α3

s −
β2

64π3
α4

s − . . . (6.4)

with

β0 = 11 − 2

3
nf

β1 = 51 − 19

3
nf

β2 = 2587 − 5033

9
nf +

325

27
n2

f

where nf is the number od ‘active flavors’ (see table 6.1)

31



Taking into account only the lowest order perturbative contribution, β0, one obtains the
transparent relation:

dαs

α2
s

=
β0

2π

dµ

µ
. (6.5)

The solution to this differential equation is

αs(µ) =
4π

β0 log
(

µ2

Λ2
QCD

) (6.6)

where the integration constant ΛQCD is a quantity typical for QCD, see table 6.1

The use of a running coupling corresponds to a resummation of all powers of
α(µ1) log(µ2

2/µ
2
1). Unfortunately this ‘renormalization group improvement’ depends not

only on the renormalization scale µ, but also in many cases on the choice of the renormal-
ization scheme. For many cases the most convenient scheme is the so called MS (speak
MS-bar) scheme. MS stands for Minimal Subtraction.

• For QED one has in lowest order perturbation theory: βQED
0 = −4

3
. Since β(α) > 0 the p. 185

running coupling increases with increasing energy scale. QED is not an asymptotically
free theory like QCD! The natural lower limit for the energy scale in QED is the electron
mass me. Restricting to lowest order β0 we obtain :

α(µ) =
α(me)

1 +
βQCD
0

4π
α(me) log

(

µ2

m2
e

)
(6.7)

with α(me) = α = 1
137

.

The expression (6.7) has a singularity at µ = mee
3π
2α . This is the so called Landau Pole, it

occurs at an energy of ca. 10277 GeV ! Compared to this energy the Planck scale is tiny. .

The radiative corrections of QED alone lead at the scale of the Z0 mass to an increase of
the running electromagnetic coupling α by ca 2%.

6.7 Quantum Chromodynamics on the Lattice
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r r

P P + µ-
ψ(P ) ψ(P + µ)U(P, µ)

Figure 6.1: The fields on a lattice. The Fermion fields are assigned to points, the gauge
fields to links between neighboring points.

Be P a lattice point and P +µ a neighboring point in µ direction; be a the lattice spacing, p. 190
that is the distance between two neighboring lattice points. If P has the coordinates
(0, 0, 0, 0) and if µ = 3, then P + µ has the coordinates (0, 0, a, 0). Be ψ(P ) a fermion
field at a lattice point P and U(P, µ) a field corresponding to a link of P to P + µ. U is
an element of the gauge group, for electrodynamics, where the gauge group is U(1), one
has:

U(P, µ) = exp[iaAµ(P )]. (6.8)

where Aµ is the electromagnetic potential.

The essential part of the interaction on the lattice is given at one hand by the pure gauge
part:

4
∑

µ,ν=1

U(P, µ)U(P + µ, ν)U(P + µ+ ν,−ν)U(P + µ,−µ), (6.9)

on the other hand by the fermionic (matter) part

4
∑

µ=1

ψ∗(P + µ)γµU(P, µ)ψ(P ). (6.10)

In the limit a→ 0 the classical limit of these expressions is just the classical electromag-
netic interaction.

Lattice QCD is defined on an Euclidian space-time continuum. This is obtained from
the usual Minkowskian space time continuum by replacing the time coordinate by an
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imaginary quantity (that is the time honored ict metric):

ct = x0 → −ix4, x4 reell (6.11)

The Minkowskian metric tensor (1.6) is replaced by the Euclidian one, that is Kronecker
deltas:
gµν → −δµν
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Chapter 7

Storm Clouds or the Dawn of a New

Physics?

7.3 The Grand Unification

One family of elementary particles consists of 15 fermions: 12 quark states, the lepton, p. 221f
antilepton and neutrino. Let us for simplicity concentrate on the lowest family, that of u
and d quarks, the electron e, and the electron-neutrino νe. The 12 quark states are the
respective 3 color states of the u and the d quarks and the corresponding antiparticles.

In the model of Georgi and Glashow (SU(5)) the three 3 u and 3 d quarks, the 3 u
antiquarks und the positron form the basis of a 10 dimensional representation. The d
antiquarks, the electron and the neutrino form the basis of a 5 dimensional represntation.

(10) = {uR, uB, uw, dR, dB, dW , ūR, ūB, ūW , ē}
(5) = {d̄R, d̄B, d̄W , e, ν}

where the indices R B W stand for the 3 colors of color-SU(3) and the bar ¯ denotes
antiparticles.

7.4 Supersymmetry
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The simplest supersymmetric algebra is generated by the following generators: the energy p. 223
operator P0, that is the translation operator in time, the momentum operators ~P, the
translation operators in space and fermionic operators Qα with the anticommutation
relations:

[Qα, Q̄β̇ ]+ = 2P0 − 2~σαβ̇
~P (7.1)

[Qα,Qβ ]+ = [Q̄α̇, Q̄β̇]+ = 0

[Pm, Qα]− = [Pm, Q̄α̇]− = 0

[Pm, Pn]− = 0

with m,n = 0 . . . 3, α, α̇ . . . = 1, 2.

7.7 Silent Strings

The equation for the displacement η of a vibrating string is: p. 234

(

d2

dx2
− 1

v2

d2

∂t2

)

η(x, t) = 0 (7.2)

where v is determined by the linear mass density µ and the tension T of the string:

v =
√

T/µ.

This wave equation 7.2 has the most general solution (d’Alembert 1747):

η(x, t) = f(x− vt) + g(x+ vt) (7.3)

where f und g are arbitrary functions of one variable.
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