
QFT II - Problem Set 4

(33) Renormalized coupling

Consider the vertex in φ4 theory. We will use Euclidian path integrals. The vertex at arbitrary momenta pi is
obtained by computing the connected part of G̃4(p1, p2, p3, p4) ≡ 〈φ(p1)φ(p2)φ(p3)φ(p4)〉 with external propa-
gators amputated. To leading order, this simply gives 〈φ(p1)φ(p2)φ(p3)φ(p4)〉 = λ.

a) At second order in λ, you get three connected diagrams. Draw them!

One of the diagrams is:

p2p1

p4p3

k + pk

b) Use the Feynman rules

• Propagator: Ḡ = (p2 + m2)−1

• Vertex: λ

• Internal loop:
∫

d4k/(2π)4 over the internal momentum k

to find an expression for the above diagram. Denote p1 + p2 = p.

c) Taking into account only the leading order λ and the diagram above, what is G̃4(p/2, p/2, p/2, p/2) to order
λ2 ? Hint (but try first yourself): the result is on the back of this page

d) Let us define λR as the coupling at vanishing momentum p:

λR ≡ G̃4(0, 0, 0, 0).

Without evaluating the integral, what is λR ?

e) Suppose that the momentum integral
∫

d4k/(2π)4 is cut-off at some UV-scale Λ and that the cut-off is low
enough to ensure that the second order term contributing towards λR is indeed smaller than λ. Using an
expansion

λ = aλR + bλ2
R,

invert the expression for λR, i.e. obtain λ(λR). Hint: say λR = λ+ cλ2, then λR = aλR + bλ2
R + caλ2

R +O(λ3
R),

which fixes a and b . . .

f) In terms of λR, what is the coupling at arbitrary momentum p = 2p1 = 2p2 that you obtained in (c) ? Hint:
don’t evaluate the integral(s).

g) Show that the result of (f) is finite for Λ → ∞ by showing that the integrand becomes proportional to 1/k2

for k → ∞.

h) Using a momentum cut-off Λ and the following simple formula for the momentum integration

∫

k2<Λ

d4k = 2π2

∫ Λ

0

k3dk,

where k on the r.h.s is of course k =
√

k · k =
√

kµkνδµν , evaluate the integral in the expression for λR, i.e.
finish the job of you started in (d).
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(34) Loop Integration over arbitrary dimension

In (33), we used a simple momentum cut-off Λ to regularize our theory. There are other ways to regularize, a
useful one is the so called dimensional regularization. The main idea is to work in 4 + ǫ dimension, perform the
integral there and then let ǫ → 0. In order to do this, it’s useful to know some formulae. We will derive them
in the following. Consider

IN =

∫

dN lF (l),

where F (l) depends only on the length of lµ and N is an integer. Defining L2 = lµlνδµν , the integration
meassure is

dN l = LN−1dL dφ sin θ1dθ1 sin2 θ2dθ2 . . . sinN−2 θN−2dθN−2,

with 0 < L < ∞, 0 < φ < 2π and 0 < θi < π. Hence

IN = 2π

N−2
∏

k=1

∫ π

0

sink θkdθk

∫

∞

0

LN−1dL F (L). (1)

a) Use the formula
∫ π/2

0

(sin t)2x−1(cos t)2y−1dt =
1

2

Γ(x)Γ(y)

Γ(x + y)

and Γ(1/2) =
√

π to simplify Equation (1).

b) Re-write this in terms of x ≡ L2.

c) From now on, consider functions that will actually occur in loop integrals, namely

F (x) = (x + a2)−A.

Make a variable substitution x → y such that you can use the following relation for the beta function

B(N/2, A − N/2) =
Γ

(

N
2

)

Γ
(

A − N
2

)

Γ(A)
=

∫

∞

0

dy y
N

2
−1(1 + y)−A.

d) Re-express x by l2. This yields the final expression for

∫

dN l

(l2 + a2)
A

.

e) Let l = l′ + p and b2 = a2 + p2, what relation do you get now ?

f) Derive the relation of (e) with respect to pµ to get an expression for

∫

dN l
lµ

(l2 + 2p · l + a2)
A

,

where p · l = pµlνδµν as usual in euclidian space.

Solution to (33 c): G̃4 = λ − λ2
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∫

d4k
(2π)4

1
k2+m2

1
(k+p)2+m2
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