
Force localization in contracting cell layers

Supplemental Material

Carina M. Edwards and Ulrich S. Schwarz

July 30, 2011

In the following, equations labelled by numbers refer to the corresponding equations in the Letter, while
equations labelled with letters refer to equations contained in this Supplemental Material.

A Layer stress for contracting stripe

We first present an explicit formula for the internal stress in the contracting stripe case. In this case the
displacement u is found in the manuscript to be

u

l0
= −P0

sinh(γx/l0)

γ cosh γ
.

Substituting this expression for u into the constitutive relation in one-dimension

F =
hEc

1− ν2
du

dx
−

hEc

2(1− ν)
P (A.1)

gives the internal stress F (x) in the layer as

F =
hEcP0

1− ν2

(

1−
cosh(γx/l0)

cosh γ

)

. (A.2)

Eq. (A.2) is plotted in Fig. 2(b) in the manuscript for various values of γ.

B Uniformly contracting disc

The solution for the displacement u for a uniformly contracting disc is found in the manuscript to be

u

r0
= −

1

2γ
P0(1 + ν)A(γ)I1(γr/r0),

A(γ) =

(

I0(γ) +
ν − 1

γ
I1(γ)

)

−1

,

which is plotted in Fig. SI(a) for different values of gamma. Note the qualitative similarity of this solution
to that of the contracting stripe presented in Fig. 2.

In order to show the dependence of the solution on γ, we focus on the average displacement over the
array, i.e.

ū =
1

πr2
0

∫

D

u dS, (B.1)
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Fig. SI (a) Plot of radial displacement |u| with γ =5, 6, 8, 10, 15 (top to bottom). (b) Plot of average
displacement |ū| scaled by cell sheet radius r0 against localization parameter γ. In both plots P0 = 0.7 and
ν = 0.45.

which is an often reported quantity in the literature. In Fig. SI(b) we plot this spatially averaged displacement
as a function of γ. We conclude that average displacement sharply decreases with increasing stiffness, which
suggests that to investigate the effect of substrate stiffness, it is advisable to examine parameter values at
the lower end of the spectrum.

To calculate the internal stresses in the layer, we note that the only non-zero stresses are the radial Frr

and hoop Fθθ stresses, which are given by

Frr =
hEc

1 + ν

(

1

1− ν

du

dr
+

ν

1− ν

u

r

)

−
hEcP

2(1− ν)
, (B.2)

Fθθ =
hEc

1 + ν

(

ν

1− ν

du

dr
+

1

1− ν

u

r

)

−
hEcP

2(1− ν)
. (B.3)

Thus to obtain expressions for the cellular stress we substitute the expression for u given above into
Eqs. (B.2) and (B.2) with P = −P0 to find that

Frr =
hEcP0

2(1− ν)

(

1−A(γ)

(

I0

(

γr

r0

)

−
(1− ν)r0

γr
I1

(

γr

r0

)))

, (B.4)

Fθθ =
hEcP0

2(1− ν)

(

1−A(γ)

(

νI0

(

γr

r0

)

+
(1− ν)r0

γr
I1

(

γr

r0

)))

, (B.5)

where A is also given above. At r = r0, Frr = 0 as required, but note that the hoop stress does not vanish
at the boundary.

C Layers with more contractile rims

Adressing the case of non-uniform contractility, we consider in the manuscript a contraction P of the form

P =

{

−P0 x < x1 or r ≤ r1
−P1 x1 < x < l0 or r1 < r < r0

,

with P1 > P0 so that the edge of the layer is more contractile than the central region. With this form of
contraction it is possible to obtain analytical expressions for the resulting displacements u as noted in the
main text. Here we present the exact solutions.

Solving Eq. (4) with zero-stress at the outer boundary, u(0) = 0 and continuity of u and F across x = x1

we find that

u

l0
=

{

− 1

2γ cosh γ
P1(1 + ν) (sinh(γx/l0)− (1− P0/P1) cosh γ (1− x1/l0) sinh (γx/l0)) x < x1,

− 1

2γ cosh γ
P1(1 + ν) (sinh(γx/l0)− (1− P0/P1) cosh γ (1− x/l0) sinh (γx1/l0)) x1 < x < l0.

(C.1)
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Equivalently solving Eq. (7) with zero-stress at the outer boundary, u(0) = 0 and continuity of u and F
across r = r1 we find that the solution is

u

r0
=

{

− 1

2γ
P1(1 + ν)aI1(γr/r0) r < r1,

− 1

2γ
P1(1 + ν) (bI1(γr/r0)− cK1(γr/r0)) r1 < r < r0,

(C.2)

where I1 and K1 are the modified Bessel functions of first and second kind, respectively. The constants a, b, c
are given by

a =
1

A(γ)
−

1− P0/P1

A(γr1/R)
+

I1(γr1/R) (1− P0/P1)

K1(γr1/R)A(γr1/R) + I1(γr1/R)B(γr1/R)

(

B(γr1/R)

A(γr1/R)
−

B(γ)

A(γ)

)

, (C.3)

b =
1

A(γ)

(

1−
I1(γr1/R)B(γ) (1− P0/P1)

K1(γr1/R)A(γr1/R) + I1(γr1/R)B(γr1/R)

)

, (C.4)

c =
I1(γr1/R) (1− P0/P1)

K1(γr1/R)A(γr1/R) + I1(γr1/R)B(γr1/R)
, (C.5)

where

A(x) = I0(x) +
(ν − 1)

x
I1(x), (C.6)

B(x) = K0(x)−
(ν − 1)

x
K1(x). (C.7)

The solution Eq. (C.2) is plotted in the Letter in Fig. 3.
Both solutions (C.1) and (C.2) show the same qualitative behaviour as described in the main text. Both

exhibit a kink at the interface between the contractile regions, which becomes more prominent as P0/P1

decreases. As the outer rim begins to dominate the behaviour of the system, it is also becomes possible that
there will be positive displacements within the layer, although the outer rim will always contract. Due to
the greater tractability of the solution (C.1) it is possibility in this case to determine when this will occur
analytically for this case and we find that positive displacements are possible if

P0 < P1

(

1−
1

cosh γ (1− x1/x0)

)

. (C.8)

Note that as the extent of the contractile rim decreases its ability to drag the inner region to the right also
decreases, indeed for x1/x0 = 1 − ǫ, with ǫ ≪ 1, the critical value is P0 ∼ ǫ2γ2P1/2. A similar dependence
on the extent of the more mechanically active region is also observed for the contractile disc, as can be seen
in Fig. 3(b) in the main text.
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