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Elastic Interactions of Cells
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Biological cells in soft materials can be modeled as anisotropic force contraction dipoles. The corre-
sponding elastic interaction potentials are long ranged (�1�r3 with distance r) and depend sensitively
on elastic constants, geometry, and cellular orientations. On elastic substrates, the elastic interaction is
similar to that of electric quadrupoles in two dimensions and for dense systems leads to aggregation
with herringbone order on a cellular scale. Free and clamped surfaces of samples of finite size intro-
duce attractive and repulsive corrections, respectively, which vary on the macroscopic scale. Our theory
predicts cell reorientation on stretched elastic substrates.
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Biological cells can exert strong physical forces on their
surroundings. One example are fibroblasts, which are me-
chanically active cells found in connective tissue. In the
early 1980s, Harris and co-workers found that fibroblasts
exert much more force than needed for locomotion [1].
They suggested that strong fibroblast traction is needed in
order to align the collagen fibers in the connective tissue.
Since cell locomotion is guided by collagen fibers, this re-
sults in a mechanical interaction of cells. The interplay
of fiber alignment and cell locomotion has been analyzed
theoretically in the framework of coupled transport equa-
tions for fiber and cell degrees of freedom [2]. However,
it is well known that cellular behavior is also affected by
purely elastic effects, which were not considered in these
studies. For example, stationary cells plated on an elas-
tic substrate which is cyclically stretched reorientate away
from the stretching direction [3], and locomoting cells on a
strained elastic substrate reorientate in the strain direction
[4]. Recent experiments show that adhering cells sense
mechanical signals through focal adhesions [5]. In con-
trast to chemical diffusion fields, elastic effects are long
ranged and propagate quickly, and they are known to be
important during development, wound healing, inflamma-
tion, and metastasis [6].

In this Letter, we consider theoretically the possibil-
ity of elastic interaction of cells. We focus on static
forces, a situation which should apply to cells with re-
stricted cytoskeletal regulation or to artificial cells which
have a biomimetic contractile system without any regula-
tion; the theoretical framework presented here for this case
is a prerequisite for understanding the more complicated
cases, e.g., the case of locomoting cells with a regulated
response and dynamic force patterns [4]. In the static case,
the elastic interaction of cells through their strain fields
leads to forces and torques which can change their po-
sitions and orientations. If the cellular configuration can
relax to equilibrium, the final configuration will be a mini-
mum of the elastic energy. In the following, we derive the
laws for elastic interactions of cells (which are modeled as
anisotropic force contraction dipoles) and show how they
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depend on elastic constants, distance, cellular orientations,
geometry, and boundary conditions.

If the distance between cells is much larger than their
spatial extent, they can be modeled as point defects in
an elastic medium. Elastic interactions of point defects
have been discussed before for, e.g., hydrogen in metal
[7], atoms adsorbed onto crystal surfaces [8], and graphite
intercalation compounds [9]. For each defect, the force is
restricted to a small region of space, and the force distri-
bution can be characterized by its force multipoles [10],

Pi1···ini �
Z

si1 · · · sin fi�s� ds , (1)

where f is the force density. The force monopole P is the
overall force, which vanishes for inert particles. There-
fore, in the classical case, the first relevant term is the
force dipole Pij , which describes the dilating/contracting
action of the force distribution and has the dimension of
an energy. Previous studies of elastic interactions of force
multipoles were mostly concerned with isotropic force di-
lation dipoles (that is, Pij � Pdij with P . 0) and the
finite sample size effect of free surfaces. The biological
case which we discuss here is different in several respects.
First, since cells can act as active walkers, there exists the
possibility of force monopoles. Second, cellular force is
based on actomyosin contractility and therefore leads to
force contraction dipoles (that is, P , 0). Third, adhering
cells in most cases generate highly anisotropic force pat-
terns; that is, the force dipole is not isotropic and will reori-
entate with respect to the surrounding strain field (e.g., on
strained substrates). Fourth, in biological cases the elastic
medium (e.g., the tissue) has clamped rather than free sur-
faces. In fact it is well known that cells become mechani-
cally active only if their environment can support enough
stress, thus clamped boundary conditions are often needed
to induce cellular activation [11].

We assume that the elastic medium of interest (real or
artificial tissues, elastic substrates) propagates strain simi-
lar to an isotropic elastic medium with a Young modulus
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in the order of kPa. For elastic substrates, the Poisson ratio
n is close to 1�2 (incompressible case). For the following
it is convenient to define L � l�m and c � 2m 1 l �
m�2 1 L�, where m and l are the Lamé coefficients of
the isotropic elastic medium. The incompressible case n �
L�2�L 1 1� � 1�2 then corresponds to the limit L ! `

with L�c ! 1�m. Propagation of strain in an infinite iso-
tropic elastic medium is described by the Green function
[12],

G3d
ij �

1
8pc

Ω
�3 1 L�dij 1 �1 1 L�

xixj

r2

æ
1
r

, (2)

where r denotes the distance from the force center. For
cells plated on an elastic substrate with a substrate thick-
ness that is much larger than the displacements caused by
cell traction, the relevant Green function is the one of an
isotropic elastic half-space with a free surface. Since such
cells apply only tangential traction, we need to specify Gij

only for the x-y plane [12]:

G2d
ij �

�2 1 L�
4p�1 1 L�c

Ω
�2 1 L�dij 1 L

xixj

r2

æ
1
r

. (3)

The elastic interaction energy W between two force distri-
butions can be written as a function of their force multi-
poles and the Green function [10],

W � 2
ZZ

fi�s�Gij�js 2 s0j�fj�s0� ds ds0

� 2
X̀
n�0

X̀
m�0

1
n!

�21�m

m!
Gij,i1···inj1···jmPi1···iniP

0
j1···jmj ,

(4)

where we sum over repeated indices and where indices af-
ter the comma represent partial derivatives. In the second
line, the first line has been expanded twice and the defini-
tions of Eq. (1) have been used.

The interaction between two force monopoles P and P 0

at r and r0, respectively, follows from Eq. (4) as W �
2PiGij �r 2 r0�P0

j . In the incompressible limit, this can
be written as W � 2�P ? P 0 1 �P ? n� �P 0 ? n���8pmr,
where n is the normalized separation vector between the
two monopole locations (in three dimensions; in two di-
mensions, an additional factor of 2 appears). This inter-
action is similar to the one between electric dipoles [13];
thus we expect chaining to dominate large scale assem-
bly, as confirmed by Monte Carlo simulations (not shown).
However, since the force monopoles correspond to active
movements, a model for cell locomotion is required to fully
treat this case.

It is generally accepted that mechanically active cells
exert only a very small overall force. Moreover, in most
cases they are usually found to have highly polarized,
that is, pinching force patterns [14]. In the following,
we therefore model cellular force patterns as anisotropic
force contraction dipoles. The direction r̂ of the pinch
can be extracted from experimentally measured force pat-
terns by determining the direction of the eigenvector of
048102-2
the force dipole tensor corresponding to its largest eigen-
value. Then the force dipole tensor can be approximated
as Pij � Pr̂i r̂j. In many cases, the cell orientation follow-
ing from the force pattern corresponds to the cell orienta-
tion following from overall cell shape or staining for actin
fibers. For both locomoting and stationary fibroblasts on
elastic substrates, the magnitude of the force dipole can be
estimated to be of the order of P � 210211J (this corre-
sponds to a pinching pair of forces, separated by a distance
of 60 mm and each 200 nN strong). The corresponding
length scale (e.g., for displacements close to the cell) is
�P�c�1�3 � 10 mm, which is somewhat smaller than a
typical cell size (�50 mm). The interaction between two
force dipoles Pli and P0

kj at r and r0, respectively, follows
from Eq. (4) as

W �r, r0� � 2Pliui,l�r, r0� � PliGij,lk�r 2 r0�P0
kj , (5)

where u�r, r0� is the displacement at r produced by the
force dipole at r0. Since G � 1�r, the elastic interaction
between force dipoles scales as �1�r3.

If the cells have isotropic force dipoles, their elastic
interactions are well known: In infinite space, W �
P2G3d

ij,ij � 0 [10] and an elastic interaction can be
induced only by the boundary conditions [7]. On a
semi-infinite space with free surface, W � P2G2d

ij,ij �
�2 1 L�2P2�4p�1 1 L�cr3, thus the interaction is
isotropic and repulsive [8]. However, in most cases the
cells will have highly anisotropic force dipoles. We start
with the half-space and consider the following situation:
One of the two interacting dipoles is fixed at the origin
with vanishing polar angle. The other dipole is a distance
r away with polar angle a. The polar angle of the sepa-
ration vector is denoted by b. Using Eq. (3) in Eq. (5),
we find

W�r, a, b� �
�2 1 L�P2

4pc�1 1 L�r3 f�a, b� , (6)

with

f�a, b� �
1
8 ��4 1 3L� cos�2a� 1 15L cos�2�a 2 2b��

1 �2 1 L� �2 1 6 cos ���2�a 2 b����
1 6 cos�2b��	 . (7)

Depending on orientation, the interaction can be repulsive
or attractive. The attractive component leads to orientation
dependent aggregation.

In order to investigate this point in more detail, we
consider force dipoles with a spherical hard core (cor-
responding to a typical cell size). For L � 0 (vanish-
ing Poisson ratio), the only favorable alignments will be
side-by-side and the cells will assemble into linear strings,
with their orientations perpendicular to the string direction.
For larger L, aggregation will be much more compact. In
the incompressible case, for a given angle b the optimal
angle a follows as amin � p�2 1 2b; the correspond-
ing f varies between 22 and 21.4. The optimal energy
22 is obtained for the four perpendicular configurations.
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Considering only nearest neighbor interactions would lead
to a square lattice at higher densities. However, at area
densities beyond p�4, this structure is overpacked and a
herringbone structure results. Although the herringbone
structure does not achieve the lower energy values of the
square lattice, it can exist up to area density p�2

p
3 and

will be favored for entropic reasons. For finite-sized clus-
ters, surface reconstruction will take place. Moreover,
for an increasing number of particles, the interaction of
Eq. (6) leads to an increasingly rugged energy landscape
with many local minima due to the long range and ori-
entation dependence of the potential. As a result of this
metastability, unusual patterns such as rings will form for
certain initial conditions. In Fig. 1 we show some typical
configurations.

It is instructive to note that the orientational part of the
interaction in the incompressible limit is very similar to
that of linear electric quadrupoles in two dimensions (see
Fig. 1). This analogy is due to the fact that the correspond-
ing interaction energy for linear electric quadrupoles, W �
Gel

,ijklPijP
0
kl [where Gel�r� � 1�r is the electric Green

function], arises from contracting tensors of analogous

-++--++-

-+
+
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FIG. 1. Typical configurations for anisotropic force dipoles
on an incompressible elastic substrate. (a) Minimal energy
configuration for two dipoles ( f � 22). (b) Linear electric
quadrupoles have the same optimal configuration. (c)–(f) Small
clusters are subject to surface reconstruction. For five particles,
(e) and (f ) are nearly degenerate ( f � 211.59 and 211.43,
respectively). (g) At high densities, herringbone order results.
(h) In terms of energy, the square lattice is most favorable.
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symmetry. However, the near perfect agreement in the
angle-dependent part is an accidental result for the incom-
pressible case; moreover, electric quadrupoles interact with
1�r5 rather than with 1�r3.

We now discuss the elastic interaction of anisotropic
force contraction dipoles acting in a three-dimensional
elastic medium, which follows by using Eq. (2) in Eq. (5).
This interaction is more complicated than the two-
dimensional one, since its orientation dependence involves
three rather than two different angles. A detailed discus-
sion will be given elsewhere. Here we discuss only some
high symmetry cases: For two parallel dipoles pointing
in the z direction and placed along the x axis, we find

Wdirect�x� �
�L 2 1�P2

8pcx3
. (8)

Thus this interaction changes sign as L varies through 1
(n � 1�4). If one considers force dipoles arranged around
a central dipole in the x-z plane, similar considerations ap-
ply as in the two-dimensional case: For example, when
considering only nearest neighbor interactions, a square
arrangement of perpendicular dipoles with interaction en-
ergy W �r� � 2�L 1 1�P2�4pcr3 is the most favorable
one. However, if one now tries to continue this arrange-
ment in the third dimension, frustration effects result. De-
pending on initial conditions, this enhances the occurrence
of irregular patterns.

Because of the long-ranged nature of the elastic inter-
action, boundary effects will be very important [7,15]. As
an instructive example, we now discuss the elastic interac-
tion of anisotropic force contraction dipoles in an isotropic
elastic sphere of macroscopic radius R. For a free sur-
face, this situation has been investigated before for both
isotropic [7] and anisotropic force dipoles [16]. However,
no such treatment exists for clamped surfaces, which are
expected to have larger biological relevance. For both free
and clamped surfaces, one has to introduce image displace-
ments, which can be determined using expansions in vector
spherical harmonics [16]. Again, the general expressions
will be given elsewhere, and here we consider only the high
symmetry case of two dipoles both orientated in the z di-
rection. Their direct interaction along the x axis is given by
Eq. (8). The image interaction follows from inserting the
image displacements of the first dipole (which are compli-
cated functions expressed as vector spherical harmonics)
into Eq. (5). For simplicity, here we report only the re-
sults for the incompressible limit. We find

W
img
free �x� �

P2

76pmR3

∑
245 1 48

µ
x

R

∂2∏
, (9)

for a free surface and

W
img
clamped�x� �

P2

20pmR3

∑
2 2 15

µ
x
R

∂2∏
, (10)

for a clamped surface. Therefore free and clamped surfaces
introduce attractive and repulsive corrections, respectively.
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FIG. 2. Elastic interaction energy W in units of P2�cR3 for
two parallel anisotropic force dipoles of magnitude P in an
isotropic elastic sphere with radius R and elastic constants c and
L � 2 (Poisson ratio n � 1�3). For this value of L, the direct
elastic interaction is repulsive (dotted lines). (a) Free surface:
the image correction (dashed line) is attractive and generates
a new minimum in the full interaction potential (solid line).
(b) Clamped surface: the image correction is repulsive.

In Fig. 2 we show the interaction energies W for L � 2
(n � 1�3) as a function of distance x. We see that the
image corrections can produce new minima in the full in-
teraction potential. The main conclusion from Eqs. (9) and
(10) is the fact that the image effects lead to corrections
which operate on the macroscopic scale R. For the case of
hydrogen in metal, this is known to lead to structure forma-
tion on a macroscopic scale (macroscopic modes) [7,15].
In the biological case, the boundary induced pattern for-
mation competes with structure formation on cellular and
elastic scales, which results from the direct elastic inter-
action. Therefore we expect that, in a theory for cellular
density modes in elastic media of finite size, hierarchical
structures will result. Similar to hydrogen in metal, image
effects can be also expected to lead to incoherent deforma-
tions (fracture).

The simplest case of the interaction of a cellular force
pattern with an elastic strain field is the case of a single
cell plated on an elastic substrate which is homogeneously
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stretched along the x direction by applying stress p . 0
at the sides. Then �ux , uy� � �p�E� �x, 2ny�, with E be-
ing the Young modulus. The interaction energy follows as
W � 2Pliui,l � 2�Pp�E� �cos2a 2 n sin2a�, where a

is the polar angle describing cell orientation. Since P , 0,
the cell will reorientate perpendicular to the direction of
stretching (a � 90±). In the case of compression, p , 0,
the cell will reorientate parallel to the direction of com-
pression (a � 0±). Although the dynamic aspects of elas-
tic interactions of cells are out of the scope of the present
work, it is worth noting that, on cyclically stretched elas-
tic substrates, p periodically changes sign and, in order to
maintain a stationary state, the cell might try to avoid both
tensile and compressive strain. One easily calculates that
this corresponds to a � arccos

p
n��1 1 n�. For n � 0.4,

this yields a � 60±, in excellent agreement with experi-
ments [3].
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