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Phase behavior and material properties of hollow nanoparticles

U. S. Schwarz and S. A. Safran
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 31 May 2000!

Effective pair potentials for hollow nanoparticles such as those made from carbon~fullerenes! or metal
dichalcogenides~inorganic fullerenes! consist of a hard core repulsion and a deep, but short-ranged, van der
Waals attraction. We investigate them for single-walled and multiwalled nanoparticles and show that in both
cases, in the limit of large radii the interaction range scales inversely with the radiusR, while the well depth
scales linearly withR. We predict the values of the radiusR and the wall thicknessh at which the gas-liquid
coexistence disappears from the phase diagram. We also discuss unusual material properties of the solid, which
include a large heat of sublimation and a small surface energy.

PACS number~s!: 61.48.1c, 61.46.1w, 82.70.Dd
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I. INTRODUCTION

The phase behavior and material properties of atomic
well as colloidal systems can often be understood using
concept of an effective pair potential@1,2#. However, in the
presence of attractive interactions there is a fundamental
ference between the atomic and colloidal cases: while ato
systems usually have a range of attraction which is com
rable with or larger than the hard core diameter, colloi
systems have a range of attraction that can be much sma
One example is the attractive depletion interaction in s
tems with sterically stabilized colloids and nonadsorb
polymers. The range of interaction can be tuned by the p
mer’s radius of gyration, and is usually one order of mag
tude smaller than the hard core diameter@3#. Another ex-
ample is the nature of attractive surfactant interactio
between inverse microemulsion droplets. Here the rang
interaction is fixed by some microscopic interpenetrat
length. By tuning the droplet size, that is the amphiphile-
ratio, the hard core diameter can be made more than
order of magnitude larger than the interaction range@4#.

For Lennard-Jones systems, the potential depth de
mines the temperature scale, and the hard core diamete
termines the density scale, respectively; after rescaling
reduced units for temperature and density, no other deg
of freedom are left, and phase transitions fall on univer
curves ~law of corresponding states!. The resulting phase
diagram features a critical point for gas-liquid coexisten
and a fluid-solid coexistence which is first order at all te
peratures. For more complicated interaction potentials,
topology of the phase diagram can change. It has long b
known that gas-liquid coexistence disappears for small in
action ranges, as is the case for the short-ranged deple
interaction in systems with sterically stabilized colloids a
nonadsorbing polymers@3#. Recent computational@5# and
analytical@6,7# work suggested that the liquid phase disa
pears, and that there is only vapor-solid coexistence w
the range of attraction is smaller than about one-third of
hard core diameter. Moreover, an isostructural solid-so
transition appears when the range of attraction decrease
another order of magnitude.

The phase behavior of C60 ~buckyballs! has recently at-
tracted much attention, since it constitutes a borderline c
for the disappearance of the liquid phase. The van der W
PRE 621063-651X/2000/62~5!/6957~11!/$15.00
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~vdW! interaction between buckyballs is usually modeled
the Girifalco potential, which is obtained by integrating a
Lennard-Jones potential for carbon atoms over two spher
shells@8#. It is expected to be valid above 249 K, since th
the buckyballs rotate freely; for lower temperatures, the
teraction becomes anisotropic@9#. Since the length scale fo
attraction is set by the position of the minimum of th
Lennard-Jones potential (3.9 Å ), it is smaller than t
buckyballs’ diameter (7.1 Å ). Early simulations using th
potential gave conflicting results with regard to the existen
of a liquid phase: while molecular dynamics simulations p
dicted that a liquid phase exists@10#, a Gibbs ensemble
Monte Carlo simulation predicted that C60 might be the first
noncolloidal substance found which does not have a liq
phase at all@11#. However, recent Monte Carlo simulation
confirmed the existence of a small liquid phase region in
phase diagram@12,13#.

Carbon buckyballs are only one example of hollow nan
particles. Up to now, more than 30 other materials which
similarly layered were prepared as hollow nanoparticles~ei-
ther spherical or cylindrical!, including, e.g., the metal di-
chalcogenidesMX2 (M5W, Se, X5S, Se), BN, GaAs,
and CdSe@14#. In fact, the formation of closed structures
generic for anisotropic layered materials of finite size due
the line tension resulting from dangling bonds. Effective p
potentials for such hollow nanoparticles are isotropic
spherical shapes, but still depend on their radiusR and thick-
nessh. In particular, for carbon onions and hollow met
dichalcogenides nanoparticles~inorganic fullerenes! the
thicknessh can vary because the particles are multiwalle
Carbon onions with hundreds of shells have been obse
@15#. Onions are formed by metal dichalcogenides with up
20 shells@16#. In both cases, outer radiiR can reach 100 nm
that is several orders of magnitude more than buckyb
with R53.55 Å . Unfortunately, control of size and shape
still rather difficult, and only some fullerenes can be pr
duced in a monodisperse manner and in macroscopic q
tities. The best investigated case are of course buckyb
which readily crystallize intofullerite. However, the synthe-
sis of hollow nanoparticles is a rapidly developing field, a
it is quite conceivable that more experimental systems of
kind will be available soon, since hollow nanoparticles pr
vide exciting prospects for future applications in nanoel
tronics and nano-optics, for storage and delivery systems
6957 ©2000 The American Physical Society
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atomic force microscopy, and for tribological applicatio
@14#.

Although this paper is concerned with hollow nanop
ticles made from anisotropically layered material, there
other types of hollow nanoparticles which should show sim
lar physical properties. Colloidal core-shell particles with
porous shell can be made hollow by removing the c
through calcination or exposure to suitable solvent. Holl
polyelectrolyte shells have been prepared by colloidal te
plating and layer-by-layer deposition@17#. The same tech-
nique can also be used to synthesize hollow silica parti
@18#. Since wet chemistry and electrostatic self-assembly
low for good control of size and shape, the wall thicknes
h could be tuned from tens to hundreds of nanometers
varying the number of deposition cycles; the radiusR is de-
termined by the size of the templating polymer partic
~usually in the submicron range!. Hollow nanoparticles also
occur in biological systems. Clathrin coats are hollow prot
cages which induce the transport of specific membrane
ceptors into the cytoplasm by coating budding vesicles,
which also self-assemble in a test tube. Recently, the hig
regular structure of the smallest clathrin coat~radius 35 nm!
was resolved in great detail by cryoelectron microscopy@19#.

In this work, we address the question of how the ph
behavior of hollow nanoparticles depend on the radiusR and
wall thicknessh. For this purpose, we use the same fram
work as the work based on the Girifalco potential, that co
sists of integrating a Lennard-Jones potential for single
oms over the appropriate geometries, and investigating
phase behavior resulting from the effective potential. W
also predict how the material properties of the solid va
with R and h, and discuss how elastic deformations w
modify our results.

Our main result is that for both single-walled and mul
walled nanoparticles, in the limit of large radii, the intera
tion range scales inversely with the radiusR, while the well
depth scales linearly withR. For the phase behavior thi
means that the gas-liquid coexistence will disappear w
increasingR. Our full analysis predicts that this will happe
for single-walled nanoparticles aroundRc512 Å , and for
completely filled nanoparticles aroundRc535 Å . It follows
that buckyballs, which haveR53.55 Å , are far from losing
their coexistence region. We find that the effect of the w
thicknessh is rather small:Rc initially increases with in-
creasingh, but then levels off on the atomic scale set by t
Lennard-Jones potential between single atoms. Moreove
temperature range is essentially set byR, and is hardly af-
fected byh. All our results are derived twice, once from th
analytically accessible Derjaguin approximation and on
from a numerical treatment of the full potential. We find th
the Derjaguin approximation predicts the right trends a
provides physical insight into the underlying mechanism
but overestimates both the potential depth and interac
range.

We also show that crystals of hollow nanoparticles w
have unusual material properties. Their heat of sublima
~which is already unusually high for fullerite! scales linearly
with R; at the same time, their surface energy~which for
fullerite is already smaller than for graphite! scales inversely
with R. Thus, with increasingR, it becomes more and mor
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difficult to melt the crystal, although the crystal becom
more and more unstable in regard to cleavage. The thickn
h does not have any significant effect here, since the parti
are nearly close packed, and the vdW interaction satur
quickly over atomic distances under adhesion conditio
However, we show that an important effect of the thicknesh
is to suppress elastic deformations for increasingh. If one
wants to exploit the unusual properties of hollow nanop
ticles, multiwalled variants are favorable, as they suppr
elastic effects which will prevent gas-liquid coexistence a
crystallization.

The paper is organized as follows: in Sec. II A we discu
the Lennard-Jones potential for the interaction betwe
single atoms. In Sec. II B we integrate the potential over
geometries of single-walled and multiwalled nanoparticles
find effective interaction potentials, which differ conside
ably from the initial Lennard-Jones potential due to the a
ditional length scales introduced. Analytical predictions f
the potential depth and interaction range can be found u
Derjaguin approximations, which well describe the releva
part of the full potential in the limit of largeR, and which are
derived in Sec. II C. In Sec. III Derjaguin approximations a
used to predict the scaling of the material properties o
crystal with radiusR and thicknessh. In Sec. IV we investi-
gate both the full potentials and their Derjaguin approxim
tions to predict at which values ofR and h the gas-liquid
coexistence will disappear from the phase diagram. In Se
we briefly discuss the effect of elastic deformations, and
present our conclusions in Sec. VI.

II. EFFECTIVE INTERACTION POTENTIALS

A. Lennard-Jones potential for single atoms

The calculation of vdW interactions between macrosco
regions of condensed matter is a well-investigated subjec
colloidal science@20,2,21,22#. It is well known that the geo-
metrical aspect of this problem is well treated by a pairw
summation of the microscopic interaction; the strength of
interaction~Hamaker constant! can be derived from Lifshitz
theory or from comparison with experiment. The 1/r 6 vdW
interaction and its crossover to Born repulsion at small se
ration is usually well described by a Lennard-Jones poten

VLJ~r !5
B

r 12
2

A

r 6
54eF S s

r D 12

2S s

r D 6G . ~1!

Girifalco obtained the effective interaction potential betwe
two buckyballs by integrating Eq.~1! over two spherical
shells@8#. By fitting resulting predictions for energy of sub
limation and lattice constant for fullerite to the experimen
results, he found the valuesA532310260 erg cm6 and B
555.773102105 erg cm12 for the Lennard-Jones interactio
of carbon atoms. Very similar values were extracted from
analogous procedure for graphite sheets@23#. For the follow-
ing it is useful to characterize the Lennard-Jones potentia
its hard core diameters5(B/A)1/6 and its potential depth
e5A2/4B. For carbon, s53.47 Å and e54.59
310215 erg520.11kT ~wherek is the Bolzmann constan
andT the room temperature!.

In order to use the atom-atom potential from Eq.~1!
within the framework of a continuum approach, one has
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know the density of atoms. For single-walled and mu
walled nanoparticles, area density% and volume densityr
will be used, respectively. The in-plane elasticity of a carb
sheet is so strong that its in-plane structure is hardly chan
when the sheet is wrapped onto a nonplanar geometry.
example, the area density of carbon atoms in a buckyb
%560/4pR250.38 Å22, with radiusR53.55 Å , is very
close to the one in graphite. The area density for both W2
and MbS2 is %50.35 Å22; it is close to the value for car
bon, since the effect of larger bond length is offset by
existence of triple layers. For future purpose we defin
dimensionless area density of atomst5%s2 and a dimen-
sionless volume density of atomsx5rs3. The two densities
are related byx5ts/ l , wherel is the distance between lay
ers. For carbon and inorganic fullerenes,l 53.4 and 6.2 Å ,
respectively. For carbon one then findst54.56 and x
54.60. For the metal dichalcogenides,t is roughly the same
but x is smaller by a factor 2 when compared with carbon.
any case, the dimensionless densities squared rou
amount to one order of magnitude.

Although the molecular structure of the metal dichalc
genides is quite different from that of carbon, the values
s ande are expected to be similar. From the Lennard-Jo
potential given above, the effective Hamaker constant
carbon follows asp2r2A53.9310212 erg'100kT. Indeed
this is the right order of magnitude for the Hamaker const
of vdW solids in vacuum@21#; thus in the following we
assume that the values ofs ande given for carbon will give
the right order of magnitude results for the metal dichal
genides, too.

B. Full interaction potentials

When integrating Eq.~1! over the volumes of two hollow
nanoparticles, we introduce two additional length scales:
radiusR and the thicknessh. Figure 1 depicts the geometr
of two multiwalled hollow nanoparticles. For the following
is useful to define the two dimensionless quantitiesh
52R/s and n5h/s, that are the particles’ diameter an
thickness, respectively, in units of the Lennard-Jones h
core diameter. Sinceh<R, we have 2n<h. The Girifalco
potential for two single-walled nanoparticles of radiusR
separated by a distancer follows from integrating Eq.~1!
over two spherical shells@8#. Using the definitions given
above, this can be written as

VG~r !5p2t2eF 2

45h8 S 1

s~s21!9
1

1

s~s11!9
2

2

s10D
2

1

3h2 S 1

s~s21!3
1

1

s~s11!3
2

2

s4D G , ~2!

FIG. 1. Schematic drawing of two multiwalled hollow nanopa
ticles with center-to-center distancer, particle radiusR, and wall
thicknessh.
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wheres5r /2R is the distance in units of the particles’ d
ameter. Heren5h/s does not appear, since the shell is a
sumed to be infinitely thin. For buckyballs,h52R/s
52.05. Then the potential minimum is atr 0510.06 Å with
a potential depth ofV0524.44310213 erg5210.73kT. In
Fig. 2~a! we plot the Lennard-Jones potential from Eq.~1!
for carbon atoms and in Fig. 2~b! the Girifalco potential from
Eq. ~2! for buckyballs. The integration over the given geom
etry strongly changes the character of the interaction po
tial: it is now two orders of magnitude stronger and rath
short ranged. The concept of a small interaction range wil
quantified below. The small width of the potential well b
comes evident when compared with a Lennard-Jones po
tial with same effective diameter and potential depth@the
dashed line in Fig. 2~b!#. The geometrical effect on the ef
fective interaction potential is a subject well known fro
colloid science.

We now calculate the vdW interaction between mu
walled hollow nanoparticles, that is between two thick she
We consider two ballsBi( i 51 and 2), each of which con
sists of a thick shellSi and a coreCi , which is a ball with
smaller radius. Then the interaction between the two sh
can be expressed in terms of interactions between sev
balls:

VS1 ,S2
5VB1 ,B2

2VC1 ,C2
2VC1 ,S2

2VS1 ,C2
5VB1 ,B2

2VC1 ,C2

2~VC1 ,B2
2VC1 ,C2

!2~VB1 ,C2
2VC1 ,C2

!

5VB1 ,B2
1VC1 ,C2

2VC1 ,B2
2VB1 ,C2

. ~3!

FIG. 2. Different van der Waals interaction potentials: t
Lennard-Jones potential for carbon atoms~a! is two orders of mag-
nitude weaker than the Girifalco potential for buckyballs@~b!, solid
line#. A Lennard-Jones potential with the same zero-crossing
potential depth as the Girifalco potential@~b!, dashed line# shows
that the Girifalco potential is rather short ranged. The vertical l
indicates that the potential diverges at a finite value of separat
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For two identical thick shells, the last two terms are iden
cal. For two identical shells of radiusR and thicknessh, we
can write Eq.~3! as

VF~r !5VRR~r !1VR2h,R2h~r !22VR,R2h~r !. ~4!

In order to proceed, we must integrate the Lennard-Jo
potential from Eq.~1! over two balls of unequal radii. The
two integrations can be done analytically, but lead to rat
lengthy formulas which are given in the Appendix. Equ
tions A2 and A3 together then yield

VR1R2
~r !54ex2@s6VR1R2

12 ~r !2VR1R2

6 ~r !#, ~5!

which can be used in Eq.~4! to obtain the full potential
VF(r ) in analytical form. This diverges atr 52R, has a mini-
mum at intermediate distances, and decays at large dista
as

VF~r !52p2x2e
16

9
n2~4n226nh13h2!

1

~hs!6
, ~6!

which is the vdW interaction between two bodies of volum
4p@R32(R2h)3#/3 each. In the two-dimensional limith
→0, the full potentialVF between two hollow nanoparticle
becomes the Girifalco potentialVG from Eq. ~2! between
two spherical shells~where the dimensionless volume de
sity x relates to the dimensionless area densityt by x
5ts/h). In general, the full potentialVF is very compli-
cated; in order to gain some physical insight, it is useful
consider its Derjaguin approximation.

C. Derjaguin approximations

The Derjaguin approximation relates the interaction
tween curved surfaces to the one between flat surfaces i
distancer 22R between the curved surfaces is smaller th
the radii of curvatureR, i.e., if s!2. The interaction energy
per unit area between two planar films a distancez apart and
each of thicknessh can be easily calculated to be

W~z!5px2eFs6

90S 1

z8
1

1

~z12h!8
2

2

~z1h!8D
2

1

3 S 1

z2
1

1

~z12h!2
2

2

~z1h!2D G . ~7!

The Derjaguin approximation integrates over one of the t
surfaces, and evaluatesW(z) at the distance to the neare
point on the other surface; for two spheres of equal radiiR it
reads

VD~r !5pRE
r 22R

`

dz W~z!. ~8!

Using Eq.~7! in Eq. ~8!, we find
-
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r
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VD~r !5p2x2eF 1

1260h6 S 1

~s21!7
1

1

~s2112n/h!7

2
2

~s211n/h!7D 2
1

6 S 1

s21
1

1

s2112n/h

2
2

s211n/h D G . ~9!

We now discuss two limits of this result. Forn!1, that is
h→0, we obtain the Derjaguin approximation for the Gir
falco potential from Eq.~2!,

VD
G~r !5p2t2eF 2

45h8

1

~s21!9
2

1

3h2

1

~s21!3G , ~10!

where we have usedx5ts/h in order to obtain the two-
dimensional limit. The same result follows formally by e
panding each of the two terms of the full potential from E
~2! separatelyarounds51. The potential minimum in the
Derjaguin approximation is found by minimizing in Eq.~10!
for s:

s0511S 2

5D 1/6 1

h
, V052

A10

9
p2t2eh. ~11!

The Derjaguin approximation is valid fors!2; thus it will
describe the potential well correctly ifs0!2, that is if h
@1. From Eq.~11! we see that in this limit of largeR, the
equilibrium distance of closest approach, 2R(s021)
5(2/5)1/6s52.98 Å , is independent ofR. Moreover it fol-
lows that in this limit, the potential depth scales linearly inR.
In Fig. 3 we plot the Girifalco potential and its Derjagu
approximation rescaled byV0 and for h52.05, 4, and 10.
While in the first case~buckyballs! the difference between
full potential and approximation is still considerable, for th
last case it is already very good. Comparing values obtai
numerically from the full potential with the values from it
Derjaguin approximation from Eq.~11!, we find that the ap-
proximation fors0 is very good even for buckyballs withR

FIG. 3. Interaction potential for single-walled nanoparticle
Girifalco potential~full line! and Derjaguin approximation~dashed
line! for different values ofh52R/s: from right to left, h52.05
~buckyballs!, 4, and 10. All potentials are scaled such that the D
jaguin approximation has its minimum at21. With increasingh,
the potential well of the full potential falls into the range describ
by the Derjaguin approximation.
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53.55 Å (h52.05). The approximation forV0 deviates by
34% for buckyballs, but only by 10% forR513.74 Å (h
57.92) and by 1% forR5147.44 Å (h584.98).

We now consider Eq.~8! in the limit n@1, that ish@s.
This is the Derjaguin approximation for a nanoparticle wh
is completely filled:

VD
F ~r !5p2x2eF 1

1260h6

1

~s21!7
2

1

6~s21!G . ~12!

Equilibrium distances0 and potential depthV0 again follow
from minimizing for s:

s0511S 1

30D
1/6 1

h
, V052

301/6

7
p2x2eh. ~13!

If we compare this result with Eq.~11! for single-walled
nanoparticles, we see that apart from the numerical pre
tors and the change from area to volume density, for sin
walled and multiwalled nanoparticles the Derjaguin appro
mation basically yields the same results for equilibriu
distances0 and potential depthV0. In particular, in both
cases the equilibrium distance is independent ofR and on an
atomic scale, and the potential depth scales linearly inR. The
reason for this agreement is that in the situation of cl
approach described by the Derjaguin approximation, the
of the gap between the particles is approximatelys. Since
the vdW interaction between two films saturates on the sa
length scale, it does not really matter how many walls th
are. Moreover there is a cancellation of two effects: in
case of multiwalled particles, more matter is present and
vdW energy increases. However, in our description of th
walls, matter is now distributed uniformly in space and t
effect of the first layer is smeared out, so the vdW ene
decreases. In reality both descriptions are idealizations; h
ever, since they essentially yield the same result fors0 and
V0, the overall description of the potential well should
sufficient. Note that in both cases, the temperature s
V0 /k ~wherek is the Boltzmann constant! is approximately
8hTR , whereTR denotes the room temperature. Thus if
gas-liquid coexistence exists for the systems under cons
ation, it will do so at several thousand K. In fact, detail
treatments for buckyballs predict gas-liquid coexistence
exist close to 2000 K.

III. MATERIAL PROPERTIES

A solid forms at high densities or low temperatures sin
then close-packed particles can benefit from the attrac
interaction without losing too much entropy. Many of th
physical properties of solids are essentially determined
the properties of the potential well. We showed above t
for a large radiusR the potential well is well described by th
Derjaguin approximation. We now proceed to predict t
material properties of such solids. By using the Derjag
approximations rather than the full potential, we are able
derive analytical formulas which show the scaling with t
different parameters involved; although they are strictly va
only for h52R/s@1, our results predict the right trends an
orders of magnitude even for small radius. For more prec
results for smallR ~relevant to buckyballs!, it is easy to treat
the full problem numerically@8#. Because the Derjaguin ap
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proximation resulted in very similar results for the potent
well of single-walled and multiwalled nanoparticles, it is su
ficient for the following to use the potential for the forme
case, i.e., Eq.~11!.

Fullerite has several unusual material properties. It ha
very high heat of sublimation~40.1 kcal/mol, five times
larger than typical for vdW solids! @24#, and it is the
softest carbon structure; its volume compressibility
310212 cm2/dyn is three and 40 times the values for grap
ite and diamond, respectively@25#. We now investigate how
these quantities scale for differentR and h. The calculation
proceeds as for Lennard-Jones solids@26#. We assume the
crystal to be face centered cubic~fcc!. The energy per par-
ticle is

u5
1

2 (
i

niV~r i !

5
1

2
@12V~r !16 V~A2r !124V~A3r !1•••#, ~14!

where the sum is over all fcc Bravais lattice sites~except the
origin, which is occupied by the particle itself!, and we
grouped the lattice sites into shells$i% of equal distance$r i%
to the origin, where shelli containsni different sites. We
explicitly give the nearest, next-nearest, and next-ne
nearest neighbor shells. Herer is measured in units ofr nn ,
the nearest-neighbor distance in the crystal, which follo
from du(r nn)/dr50. In the following we will use the
nearest-neighbor approximation,u'6V(r ). Then r nn
52Rs0 and u56V0, with s0 and V0 from Eq. ~11!. The
lattice constant is then given bya5A2r nn .

The heat of sublimation per mol is simplyDH
5NAu(r nn)56NAV0 with Avogadro’s numberNA56.02
31023 mol21. Therefore,

DH5
2A10

3
p2NAt2eh. ~15!

Since in the nearest-neighbor approximation the heat of s
limation depends only on the direct interaction between
particles and not on any geometrical aspect of the cry
lattice, it scales linearly withR. Thus we find that the heat o

FIG. 4. Interaction potential for multiwalled nanoparticles: Fu
potential ~solid! and Derjaguin approximation~dashed! for h
52R/s510 and n5h/s50.8 ~lower curves! and 0.4 ~upper
curves!. All potentials are scaled with the same factor as in Fig.
The Derjaguin approximation improves with increasing wall thic
nessn.
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sublimation, which is already unusually high for buckybal
increases even more with radiusR. Using t54.56 andh
52.05 for buckyballs yieldsDH558.46 kcal/mol; given
that we use the nearest-neighbor and Derjaguin approx
tions ~which is valid forh@1), the agreement with the ex
perimental value of 40.1 kcal/mol@24# is surprisingly good.

The bulk modulus follows as@26#

B52V
]P

]V
5

A2

9r nn

]2u

]r 2
~r nn!

5
A26

9~2R!3s0

]2VD

]s2
~s0!5

205/6p2t2

s0

e

s3
. ~16!

For h@1, s0'1, andB becomes independent ofR. There-
fore, its scale must be set bye/s3 from dimensional consid-
erations. The volume compressibility follows asb51/B.
Extrapolating this to buckyballs, we findb53.65
310212 cm2/dyn, which again is in surprisingly goo
agreement with the experimental valueb57
310212 cm2/dyn @25#.

The energy per area needed to cleave the crystal into
along lattice planes perpendicular to a given direction
twice the surface energyg for this direction. For simplicity
we will consider only the~111! direction. Before doing so
we first discussg for the layered material. Using the neare
neighbor approximation, we have to determine the ene
per area at the equilibrium separation of two planar she
Taking the limit h→0 in Eq. ~7!, using x5t/h and mini-
mizing for distancez, yields

gG5
3

5
pt2

e

s2
. ~17!

Again the combinatione/s2 follows from dimensional con-
siderations. For carbon we findg5150 erg/cm2, which
compares quite well with the experimental value ofg
5130 erg/cm2 for graphite@23#.

We now consider the~111! direction of the fcc solid.
Since a given molecule in a corresponding lattice plane
three nearest neighbors in the adjacent plane,g can be esti-
mated to be 3V0/2 times the area density in a close-pack
plane with a nearest-neighbor distancer nn , 2/A3r nn

2 :

g5
A10

3A3
p2t2

1

s0
2h

e

s2
5

5A10

9A3

1

s0
2h

gG . ~18!

For h@1, s0'1, and the surface energyg scales inversely
with R. Extrapolating to buckyballs, we findg
5115 erg/cm2, that is a value smaller than the surface e
ergygG of graphite. Although the interaction becomes stro
ger asR, the number of vdW contacts decreases as 1/R2, and
the geometrical effects dominates. With increasingR, it
hence becomes easier to cleave the crystal. Note, howe
that this does not lead to an enhanced roughening of
crystal surface. In fact the roughening temperature scale
ga2;R, with a;R being the lattice constant@22#. Since the
melting temperature scales with the potential depth which
turn scales withR, both temperatures scale withR, and the
,

a-

o
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-
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s

-
-
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e
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n

roughening temperature remains a certain fraction of
melting temperature with varyingR, as is usually the case.

IV. PHASE BEHAVIOR

For the simple Lennard-Jones interaction of Eq.~1!, we
can rescale the potential with the well depthe and the dis-
tancer with the hard core diameters, to write

VLJ~r !54F S 1

r D 12

2S 1

r D 6G , ~19!

which has no other free parameters. The resulting phase
gram in reduced temperaturet5kT/e and volume density
F5prs3/6 ~wherer is density ands hard core diameter!
is universal; the phase diagrams for all Lennard-Jones
tems are identical when plotted in units oft and F ~law of
corresponding states!. In Sec. II B we derived effective in-
teraction potentials for single-walled and multiwalled nan
particles. Single-walled nanoparticles interact via the G
falco potentialVG from Eq. ~2!. Although derived from the
Lennard-Jones potential from Eq.~1! for two single atoms,
this involves an additional length scale: the particle diame
2R5hs. Multiwalled nanoparticles interact with the com
plicated potentialVF given by Eqs.~4! and~5!. Here another
length scale enters—the wall thicknessh5ns. Since they
involve more than one length scale, the potentialsVG andVF
do not lead to a law of corresponding states, and their ph
behavior needs closer inspection.

In Sec. II C we showed that for largeR, the Derjaguin
approximations given in Eqs. 10 and 12 forVG and VF ,
respectively, give good approximations of the potential w
In Sec. III this model was used to predict certain physi
properties of solids which are essentially determined by
properties of the potential near its minimum. In regard
phase behavior, the situation is more complicated, since
the entire range of the potential matters. However, rec
work @5,7,6# suggests that for an isotropic interaction pote
tial with hard core repulsion and some attractive compon
for which potential depth and hard core diameter have b
used to scale temperature and density to reduced units
topology of the phase diagram will be essentially determin
by oneadditional feature of the effective potential, name
its interaction range. This quantity is well defined only for
square well potentials, where it is the ratio of the well wid
to the hard core diameter. For continuous potentials, the
lowing definition has been employed@7#: d5(r 12r 0)/r 0,
wherer 0 is the position of the potential minimum, andr 1 the
distance at which the potential has fallen to 1/100 of
potential depth atr 0. Note that the interaction ranged is
independent of the potential depthe. For the Lennard-Jone
potential given in Eq.~19!, d51.42, and for the Girifalco
potential for buckyballs given in Eq.~2!, d50.83. In the
framework of a variational scheme for the double Yuka
potential, it was found that the gas-liquid coexistence dis
pears ford&0.4, and that an isostructural solid-solid coe
istence appears ford&0.02 @7#. Similar values were found
for the square well potential both in a simple van der Wa
theory @6# and in extensive Monte Carlo simulations@5#.

The physical reason for the disappearance of the g
liquid coexistence is well known. The fluid-solid phase tra
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sition is driven mainly by changes in free volume: at hi
densities, the solid becomes more favorable since its ord
structure provides more space for fluctuations~therefore,
hard sphere systems exhibit a entropy-driven fluid-solid tr
sition!. In contrast, the gas-liquid coexistence is driven
the attractive interaction: at low temperatures, the fluid ph
separates so that the gas and liquid phases can profit en
cally and energetically, respectively. The critical temperat
for the fluid-fluid coexistence scales linearly with the dep
of the potential, and also depends on its higher mome
Even if the potential is only slightly attractive, the critic
point will exist by itself. However, the corresponding ga
liquid coexistence will survive in the overall phase diagra
only if the critical temperature lies above the temperature
which the fluid coexists with the solid at the critical densi
In Fig. 5 we schematically depict the two possible outcom
which we have to consider in this work.

The calculation of phase diagrams from various inter
tion potentials has reached a high level of sophistication,
different schemes are readily available for a detailed anal
~compare Ref.@13# for an overview of different method
applied in the case of buckyballs!. In the following we ask
how the gas-liquid coexistence disappears from the ph
diagram of hollow nanoparticles as a function ofR and h.
For this purpose, it is sufficient to adopt the simple criteri

FIG. 5. Phase diagrams~a! with and ~b! without gas-liquid co-
existence as a function of reduced temperaturet5kT/e and volume
fraction f5prs3/6. G, L, S, and F denote gaseous, liquid
solid, and fluid phases, respectively. In~b! the attractive interaction
potential is so short ranged that the gas-liquid coexistence~although
existing by itself! is suppressed in the overall phase diagram by
fluid-solid coexistence. For a double Yukawa potential, the cro
over between the two topologies of the phase diagram occurs w
the interaction range decreases below the critical valued'0.4.
ed
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e
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e
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t
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s
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se

which was derived within the framework of a sophisticat
variational scheme for the double Yukawa potential: the g
liquid coexistence disappears if the interaction ranged falls
belowd'0.4. The basic justification for our approach lies
the fact that the interaction potentials under considera
can be fit well by the double Yukawa potential. This pote
tial in fact has three parameters@7#, one of which scales the
potential depth. The remaining two can be used to adjust
position of the potential minimum and the interaction rang
The zero crossing of the potential can be identified with
hard core diameter, and for the double Yukawa poten
equals 1 by definition. For colloids as well as for the hollo
nanoparticles discussed in this work, the position of the
tential minimum should always be close to the hard c
diameter, that is a little larger than 1. Therefore, we are
with only one degree of freedom, which in our approach c
be used to fit the interaction ranged. The interaction range
for the full potentialsVG andVF can be determined numer
cally. The corresponding Derjaguin approximations can
used to gain some physical insight into the numerical resu
In fact, for very largeR the Derjaguin approximation shoul
correctly describe not only the part of the potential whi
contains the potential minimum, but also the part which co
tains the interaction range.

We first discuss single-walled nanoparticles. The D
jaguin approximation to the Girifalco potentialVG is given
in Eq. ~10!. Combining this with the result for its potentia
depth@Eq. ~11!#, gives

VD
G~r !5V0F 2

5A10

1

@h~s21!#9
2

3

A10

1

@h~s21!#3G .

~20!

Thus we find that for largeR, the particle diameter 2R
5hs simply serves to rescale the separation distance. W
s0 from Eq. ~11! and s15114.56/h determined numeri-
cally, we find

d5
3.70

h1~2/5!1/6
5

3.70

h
1OS 1

h2D . ~21!

Thus we conclude that the dimensionless interaction rangd
scales inversely withR for largeR. This result can be under
stood as follows: on an absolute scale, the interaction ra
is essentially constant since it corresponds to the range o
Lennard-Jones interaction between atoms. It is made dim
sionless by rescaling with the position of the effective pote
tial minimum, which is fixed by the Lennard-Jones potent
close to 2R; therefore, the dimensionless interaction ranged
scales inversely withR. In Fig. 6 we plot the interaction
range of the Girifalco potential and the result from the D
jaguin approximation@Eq. ~21!#. Although the curves col-
lapse onto each other for largeh, for h52.05 they disagree
considerably (d50.83 versusd51.27). Guerin@27# fit the
Girifalco potential to a double Yukawa potential for whic
he foundd50.56. The difference between this value for t
fit and d50.83 for the Girifalco potential arises since th
fitting procedure does not preserve the value of the inte
tion range. The approach used in this work amounts to us
the three free parameters of the double Yukawa potentia
fit it to the potential depthe, the position of the minimumr 0

e
s-
en
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and the interaction ranged of the potential under investiga
tion, thus preserving the value of the interaction range. F
ure 6 shows that forh'7, the full potential hasd'0.4, and
the liquid-gas coexistence is expected to disappear. This
responds toR'12 Å , i.e., C690. On the basis of these re
sults, we have to conclude that buckyballs C60 are in fact
rather far away from losing their gas-liquid coexistence.

We now proceed to discuss multi-walled nanoparticl
The Derjaguin approximation is given in Eq.~9!. Since it
involves one more length scale, it cannot be treated in
same way as the Derjaguin approximation for the Girifa
potential. However, we showed above that the potential s
rates for largeh. The limit h@s is given in Eq.~12!. Com-
bining this with the result for the potential depth@Eq. ~13!#
gives

VD
F ~r !5V0F 7

1260 301/6

1

@h~s21!#7
2

7

6 301/6@h~s21!#
G .

~22!

As in the case for single-walled nanoparticles, 2R5hs res-
cales the particles separation. Withs0 from Eq. ~13! ands1
51166.18/h determined numerically, we now find

d5
65.61

h1~1/30!1/6
5

65.61

h
1OS 1

h2D . ~23!

Thus the dimensionless interaction ranged scales inversely
with R in both cases, although it has a larger prefactor in
multiwalled case, so that the gas-liquid coexistence dis
pears at larger values ofR for larger wall thicknessh.

In Fig. 7 we plot the numerical results for the interacti
ranged of the full potentials and their Derjaguin approxim
tions. Different values of the interaction ranged are shown
as isolines in the (n,h) plane, and the critical interactio
rangedc50.4 is drawn as a dashed line. The gas-liquid
existence exists only in the region below the dashed l
Both diagrams agree with the general trends which were
plained above: the coexistence disappears for largeR and
small h, and the critical line levels off for largeh. However,
the Derjaguin approximation overestimates the interac
range, the real region with coexistence being in fact mu
smaller. From the results for the full potentials, we can c

FIG. 6. Double logarithmic plot of the interaction ranged of
single-walled nanoparticles as a function ofh52R/s for the Giri-
falco potential~full line! and its Derjaguin approximation~dashed
line!. The dotted lines atd50.4 andd50.02 separate the long-
intermediate-, and short-ranged regimes. Buckyballs withh52.05
still have the gas-liquid coexistence which disappears only fod
,0.4; that is,h.7 (R.12 Å ).
-
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e
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e
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clude that the coexistence disappears forh'7 (R
'12 Å ) for single-walled and forh'20 (R'35 Å ) for
filled nanoparticles, respectively; the crossover with incre
ing wall thickness is rapid and on an atomic length scale
particular we now can predict that buckyballs~single walled,
R53.55 Å , h52.05, andh5n50) will have a gas-liquid
coexistence, while typical metal dichalcogenides nanop
ticles ~multiwalled, R5600 Å , h5346, h593 Å , and
n527) will almost certainly have none.

V. ELASTIC DEFORMATIONS

We now briefly discuss at which values ofR and h the
effects investigated above may be modified by the defo

FIG. 7. Interaction ranged of multiwalled nanoparticles as a
function ofh52R/s andn5h/s for ~a! the Derjaguin approxima-
tion and~b! the full potential. The dotted line delimits the allowe
region h<R, that ish>2n. The dashed line marksd50.4. Only
the region between the dotted and dashed lines has a gas-l
coexistence, whose size is overestimated in the Derjaguin app
mation. Filled nanoparticles (h52n) do not have a liquid phase fo
h.20 (R.35 Å ).
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ability of the particles. Although fullerenelike material inte
acts only through vdW forces, the resulting elastic deform
tions can be substantial, as shown both experimentally
theoretically for carbon nanotubes@28#. A detailed treatment
of the elastic deformation of hollow nanoparticles is difficu
and relatively unexplored. Here we adopt a simple sca
approach which was used before to investigate the mech
cal stability of hollow nanoparticles in tribological applica
tions @29#.

We ask when will considerable elastic deformations
hollow nanoparticles occur due to vdW interactions as
function of R andh. We consider two hollow nanoparticle
adhering to each other due to their mutual vdW interacti
as depicted in Fig. 8. The hollow nanoparticle is assume
be an elastic shell with preferred radiusR. Its deformation
energy has two parts: a bending energy characterized by
bending constantk, and a stretching energy characterized
the two-dimensional Young modulusG. If an external force
is applied, the balance between these two contributions le
to a localization of the deformation@30#. For small adhesive
load, the shell flattens in a contact region and the ove
deformation energy scales as

Ede f;
G1/2k1/2

R
H2, ~24!

whereH is the indentation~compare Fig. 8!. The vdW en-
ergy gained on deformation can be estimated as follo
apart from some numerical prefactor, the adhesion ene
per area is essentiallyx2e/s2 @this follows from minimizing
for distancez in Eq. ~7!; the limit of single walls is given in
Eq. ~17!#. For smallH, it follows from simple geometry tha
the area over which the two shells approach each other sc
with RH ~compare Fig. 8!. Therefore, we have

EvdW;
x2Re

s2
H. ~25!

For single-walled nanoparticles,x has to be replaced byt,
which, however, has nearly the same value. We now
solve Ede f5EvdW for indentationH. We then ask for the
critical radiusRc at which the indentation becomes cons
erable, i.e., of the order of the smallest length scale in
problem, which iss. This yields

hc5
2Rc

s
;S G1/2k1/2s

x2e
D 1/2

. ~26!

FIG. 8. Schematic drawing of two multiwalled hollow nanopa
ticles deformed due to vdW adhesion.H is the indentation. It fol-
lows geometrically that the contact area scales withRH.
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For single-walled fullerenes, the value for the bending rig
ity k can be extracted from molecular calculations to bek
51.6310212 erg. The value for the two-dimensional Youn
modulus G can be extracted from the elastic moduli
graphite asG53.63105 erg/cm2. Then we findhc516.5,
that is considerable deformation is expected forR.30 Å .
For single-walled nanoparticles made from metal dichal
genides MoS2 and WS2, G is smaller by a factor 4 andk is
larger by a factor 10; thushc increases slightly~by a factor
1.3).

For nanoparticles with a few walls (s,h,R), one can
show in the framework of linear elasticity theory thatk
5C11h

3/12 andG5C11h, whereC11 is the in-plane stretch-
ing elastic constant of the corresponding layered mate
@31#. Using these relations yields

hc5
2Rc

s
;S C11s

3

x2e
D 1/2

h

s
. ~27!

Thus, the critical radiusRc scales linearly with the wall
thicknessh. The values forC11 are 106031010, 23831010,
and 15031010 erg/cm3 for C, MoS2, and WS2, respectively
@32#. For WS2 particles withh5100 Å , the critical radius
following from Eq. ~27! is well above 1000 Å .

We found above that the gas-liquid coexistence dis
pears atR'12 Å for single-walled nanoparticles and atR
'35 Å for filled nanoparticles. Our estimates for the ons
of elastic effects is at least of the same order of magnitu
Therefore, we conclude that the elastic effects will not aff
hollow nanoparticles which do have a fluid-fluid coexisten
In general, the effect of wall thicknessh of multiwalled
nanoparticles is much stronger on the elastic response th
is on the phase behavior. Therefore, multiwalled variants
favorable if one wants to make use of the unusual proper
of hollow nanoparticles without being restricted by elas
effects.

VI. CONCLUSION

In this work, we predicted the phase behavior and ma
rial properties of hollow nanoparticles as a function of rad
R and wall thicknessh. The synthesis of hollow nanopar
ticles is a rapidly developing field, driven by the spec
properties of particles in the nanometer range which m
allow many new applications to be developed in the futu
@14#. Although our analysis is aimed at hollow nanoparticl
made from anisotropically layered material like carb
~fullerenes! or metal dichalcogenides~inorganic fullerenes!,
it could also be applied to colloidal or biological examples
hollow nanoparticles. Our starting point was the Lenna
Jones interaction between single atoms, which we integra
over the appropriate geometries in order to obtain effec
potentials for the vdW interaction between single-walled a
multiwalled nanoparticles. The subsequent analysis was t
fold: Derjaguin approximations for the effective potentia
provided the correct scaling laws and physical insight, wh
numerical investigations of the full potentials allowed us
make quantitative predictions.

We first showed that crystals of hollow nanoparticles ha
unusual material properties. Since the effective contact a
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and therefore the potential depth scales linearly with radiuR
for largeR, their heat of sublimation and surface energy w
scale linearly and inversely withR, respectively. This mean
that with increasingR, it will become more difficult to melt,
but easier to cleave the crystal. The thicknessh has little
influence here, since the vdW interaction saturates over
atomic length scale of the Lennard-Jones potential un
close-packed conditions. For reasonable values ofR, we pre-
dicted values for the heat of sublimation and surface ene
which for vdW solids are unusually high and low, respe
tively; this was already found experimentally for fullerit
but should be more pronounced for larger fullerenes and
organic fullerenes.

Our discussion of phase behavior centered around the
istence of a liquid phase and the concept of the interac
range. We argued that after scaling out hard core diam
and potential depth, the interaction range is the relevant
ture of an effective potential which determines phase beh
ior. We showed that for a large radiusR, the interaction
range scales inversely withR, and again is little affected by
thicknessh. The numerical analysis supported this findin
and allowed us to calculate the interaction range as a fu
tion of R and h. Using recent work on the double Yukaw
potential, which can be fit well to our potentials, we cou
identify the disappearance of the liquid phase with a dim
sionless interaction ranged'0.4. We then found that the
liquid phase will disappear atR'12 Å for single-walled
particles and atR'35 Å for filled nanoparticles. Although
several theoretical studies investigated the phase behavi
buckyballs as a likely candidate for the nonexistence of
liquid phase in a noncolloidal system, we conclude t
buckyballs withR53.55 Å are in fact rather far away from
losing their liquid phase.

Finally, we showed that the wall thicknessh has a strong
effect on the elastic properties of hollow nanoparticles. U
ing scaling arguments for elastic shells with preferred rad
R and the known scaling of the elastic moduli withh, we
predicted that elastic effects should not interfere with
phase behavior of those~inorganic! fullerenes which do have
a liquid phase.

Despite the widespread theoretical interest in the ph
behavior of buckyballs, little experimental work has be
done on the phase behavior of hollow nanoparticles. Si
the potential depth scales linearly with the radiusR, the cor-
responding energy scales are large and experiments ha
be conducted at temperatures of several thousand K, w
their mechanical stability becomes a limiting factor. Ho
ever, the temperature scale can in principle be lowered by
to two orders of magnitude by dispersing the nanoparticle
a fluid medium of high dielectric constant@21#. Regarding
hollow nanoparticles which are impermeable to solvent
would not be difficult to extend our analysis to the case
vdW interactions between spatial regions with three differ
dielectric constants instead of two. Our analysis should
directly applicable to the vdW interaction in systems w
hollow polyelectrolyte and silica shells, whose walls are p
meable to solvent@17,18#. However, in this case additiona
effects like electrostatic interactions might have to be ta
into account. Moreover, elastic and even plastic effects~low
yield strength due to noncovalent bonding in the shell! are
expected to be more prominent for these systems.
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APPENDIX: INTEGRATION OF LENNARD-JONES
POTENTIAL OVER TWO BALLS OF UNEQUAL RADII

In order to integrate the Lennard-Jones potential over
balls of unequal radiiR1 and R2 and center-to-center dis
tancer, it is helpful to adopt the following coordinate sys
tem: consider a sphere of radiusR centered atz5r on thez
axis. This sphere can be decomposed into caps of sphe
shells of radiusr 8 centered around the origin. Integrating o
the two angles on the spherical caps leaves us with the
lowing integral@20#:

E
sphere

dV f~r 8!5
p

r Er 2R

r 1R

dr8r 82
R22~r 2r 8!2

r 8
f ~r 8!.

~A1!

For example, for f (r )51 we obtain the sphere volum
4pR3/4. To integrate a givenf (r ) over two spheres, the
same integral has to be used twice, where in the sec
integration f (r ) is the result of the first integration. Fo
f (r )51/r 6 we find @20#

VR1R2

6 ~r !5
p2

6 S 2R1R2

r 22~R11R2!2
1

2R1R2

r 22~R12R2!2

1 log
r 22~R11R2!2

r 22~R12R2!2D , ~A2!

and, for f (r )51/r 12,

VR1R2

12 ~r !5
16p2R1

3R2
3

4725~r 22~R12R2!2!7~r 21~R11R2!2!7

3@235~R1
22R2

2!6~5 R1
4114R1

2 R2
215 R2

4!

2700~R12R2!4~R11R2!4~R1
21R2

2!

3~R1
4110R1

2 R2
21R2

4!r 2156~R1
22R2

2!2

3~70R1
8249R1

6 R2
22762R1

4 R2
4249R1

2 R2
6

170R2
8!r 424~R1

21R2
2!~875R1

8211 844R1
6 R2

2

122 898R1
4 R2

4211 844R1
2 R2

61875R2
8!r 6
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