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Phase behavior and material properties of hollow nanoparticles
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Effective pair potentials for hollow nanoparticles such as those made from céiddterenes or metal
dichalcogenidesginorganic fullerenesconsist of a hard core repulsion and a deep, but short-ranged, van der
Waals attraction. We investigate them for single-walled and multiwalled nanoparticles and show that in both
cases, in the limit of large radii the interaction range scales inversely with the miadiusile the well depth
scales linearly wittR. We predict the values of the raditsand the wall thicknesh at which the gas-liquid
coexistence disappears from the phase diagram. We also discuss unusual material properties of the solid, which
include a large heat of sublimation and a small surface energy.

PACS numbd(s): 61.48+4c, 61.46+w, 82.70.Dd

[. INTRODUCTION (vdW) interaction between buckyballs is usually modeled by
the Girifalco potential which is obtained by integrating a
The phase behavior and material properties of atomic akennard-Jones potential for carbon atoms over two spherical
well as colloidal systems can often be understood using thehells[8]. It is expected to be valid above 249 K, since then
concept of an effective pair potentigl,2]. However, in the the buckyballs rotate freely; for lower temperatures, the in-
presence of attractive interactions there is a fundamental diteraction becomes anisotrofdig]. Since the length scale for
ference between the atomic and colloidal cases: while atomiattraction is set by the position of the minimum of the
systems usually have a range of attraction which is compakennard-Jones potential (3.9 A), it is smaller than the
rable with or larger than the hard core diameter, colloidalouckyballs’ diameter (7.1 A). Early simulations using this
systems have a range of attraction that can be much smallgyotential gave conflicting results with regard to the existence
One example is the attractive depletion interaction in sysef a liquid phase: while molecular dynamics simulations pre-
tems with sterically stabilized colloids and nonadsorbingdicted that a liquid phase exisfd0], a Gibbs ensemble
polymers. The range of interaction can be tuned by the polyMonte Carlo simulation predicted thag&might be the first
mer’s radius of gyration, and is usually one order of magni-noncolloidal substance found which does not have a liquid
tude smaller than the hard core diamegf. Another ex- phase at al[11]. However, recent Monte Carlo simulations
ample is the nature of attractive surfactant interactiongconfirmed the existence of a small liquid phase region in the
between inverse microemulsion droplets. Here the range gfhase diagrarh12,13.
interaction is fixed by some microscopic interpenetration Carbon buckyballs are only one example of hollow nano-
length. By tuning the droplet size, that is the amphiphile-oilparticles. Up to now, more than 30 other materials which are
ratio, the hard core diameter can be made more than or@milarly layered were prepared as hollow nanoparti¢es
order of magnitude larger than the interaction rapdje ther spherical or cylindrical including, e.g., the metal di-
For Lennard-Jones systems, the potential depth detechalcogenidesMX, (M=W, Se, X=S, Se), BN, GaAs,
mines the temperature scale, and the hard core diameter dead CdSd14]. In fact, the formation of closed structures is
termines the density scale, respectively; after rescaling tgeneric for anisotropic layered materials of finite size due to
reduced units for temperature and density, no other degreeke line tension resulting from dangling bonds. Effective pair
of freedom are left, and phase transitions fall on universapotentials for such hollow nanoparticles are isotropic for
curves (law of corresponding statgsThe resulting phase spherical shapes, but still depend on their ratusnd thick-
diagram features a critical point for gas-liquid coexistencenessh. In particular, for carbon onions and hollow metal
and a fluid-solid coexistence which is first order at all tem-dichalcogenides nanoparticleGnorganic fullerenes the
peratures. For more complicated interaction potentials, théhicknessh can vary because the particles are multiwalled.
topology of the phase diagram can change. It has long beedarbon onions with hundreds of shells have been observed
known that gas-liquid coexistence disappears for small interf15]. Onions are formed by metal dichalcogenides with up to
action ranges, as is the case for the short-ranged depleti®0 shell§16]. In both cases, outer radi can reach 100 nm,
interaction in systems with sterically stabilized colloids andthat is several orders of magnitude more than buckyballs
nonadsorbing polymerg3]. Recent computationdl5] and  with R=3.55 A . Unfortunately, control of size and shape is
analytical[6,7] work suggested that the liquid phase disap-still rather difficult, and only some fullerenes can be pro-
pears, and that there is only vapor-solid coexistence wheduced in a monodisperse manner and in macroscopic quan-
the range of attraction is smaller than about one-third of theities. The best investigated case are of course buckyballs,
hard core diameter. Moreover, an isostructural solid-solidvhich readily crystallize intdullerite. However, the synthe-
transition appears when the range of attraction decreases kis of hollow nanoparticles is a rapidly developing field, and
another order of magnitude. it is quite conceivable that more experimental systems of this
The phase behavior of (g (buckyballg has recently at- kind will be available soon, since hollow nanoparticles pro-
tracted much attention, since it constitutes a borderline caséde exciting prospects for future applications in nanoelec-
for the disappearance of the liquid phase. The van der Waatsonics and nano-optics, for storage and delivery systems, for
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atomic force microscopy, and for tribological applicationsdifficult to melt the crystal, although the crystal becomes
[14]. more and more unstable in regard to cleavage. The thickness
Although this paper is concerned with hollow nanopar-h does not have any significant effect here, since the particles
ticles made from anisotropically layered material, there arére nearly close packed, and the vdW interaction saturates
other types of hollow nanoparticles which should show simi-quickly over atomic distances under adhesion conditions.
lar physical properties. Colloidal core-shell particles with aHowever, we show that an important effect of the thickrtess
porous shell can be made hollow by removing the cordS to suppress .elastic deformations for increadindf one
through calcination or exposure to suitable solvent. HollowVants to exploit the unusual properties of hollow nanopar-
polyelectrolyte shells have been prepared by colloidal temicles, multiwalled variants are favorable, as they suppress
plating and layer-by-layer depositidi7]. The same tech- elastic _effe_cts which will prevent gas-liquid coexistence and
nique can also be used to synthesize hollow silica particlegrySta"'zat'on: . . .
[18]. Since wet chemistry and electrostatic self-assembly al;, The paperis organized as follows: in Sec. || A we discuss
low for good control of size and shape, the wall thicknesses.

varying the number of deposition cycles; the radRiis de- find effective interaction potentials, which differ consider-

termined by the size of the templating polymer particles,py from the initial Lennard-Jones potential due to the ad-
(usually in the submicron rangeHollow nanoparticles also gitional length scales introduced. Analytical predictions for
occur in biological systems. Clathrin coats are hollow proteinne potential depth and interaction range can be found using
cages which induce the transport of specific membrane reperjaguin approximations, which well describe the relevant
ceptors into the cytoplasm by coating budding vesicles, bupart of the full potential in the limit of larg®, and which are
which also self-assemble in a test tube. Recently, the highlgerived in Sec. Il C. In Sec. Il Derjaguin approximations are
regular structure of the smallest clathrin céatdius 35 nm  used to predict the scaling of the material properties of a
was resolved in great detail by cryoelectron microscd$}. crystal with radiusRk and thickness$. In Sec. IV we investi-

In this work, we address the question of how the phasgate both the full potentials and their Derjaguin approxima-
behavior of hollow nanoparticles depend on the rafland  tions to predict at which values d® and h the gas-liquid
wall thicknessh. For this purpose, we use the same frame-coexistence will disappear from the phase diagram. In Sec. V
work as the work based on the Girifalco potential, that conwe briefly discuss the effect of elastic deformations, and we
sists of integrating a Lennard-Jones potential for single atPresent our conclusions in Sec. VI.
oms over the appropriate geometries, and investigating the
phase behavior resulting from the effective potential. We Il. EFFECTIVE INTERACTION POTENTIALS
also predict how the material properties of the solid vary

with R and h, and discuss how elastic deformations will
modify our results. The calculation of vdW interactions between macroscopic

A. Lennard-Jones potential for single atoms

12

@

Our main result is that for both single-walled and multi- regions of condensed matter is a well-investigated subject in
walled nanoparticles, in the limit of large radii, the interac- colloidal sciencé20,2,21,22. It is well known that the geo-
tion range scales inversely with the radRswhile the well ~ metrical aspect of this problem is well treated by a pairwise
depth scales linearly wittR. For the phase behavior this summation of the microscopic interaction; the strength of the
means that the gas-liquid coexistence will disappear withinteraction(Hamaker constantcan be derived from Lifshitz
increasingR. Our full analysis predicts that this will happen theory or from comparison with experiment. The *LvdwW

for single-walled nanoparticles arouiR,=12 A, and for interaction and its crossover to Born repulsion at small sepa-
completely filled nanoparticles arou}=35 A . It follows ration is usually well described by a Lennard-Jones potential:
that buckyballs, which havR=3.55 A, are far from losing 6

their coexistence region. We find that the effect of the wall V()= ———=4¢ (E f) ]

; ; B it i s LJ 12 .6
thicknessh is rather small:R. initially increases with in- r r r r
creasingh, but then levels off on the atomic scale set by the
Lennard-Jones potential between single atoms. Moreover th@irifalco obtained the effective interaction potential between
temperature range is essentially setRyand is hardly af- two buckyballs by integrating Eql) over two spherical
fected byh. All our results are derived twice, once from the shells[8]. By fitting resulting predictions for energy of sub-
analytically accessible Derjaguin approximation and oncdimation and lattice constant for fullerite to the experimental
from a numerical treatment of the full potential. We find thatresults, he found the values=32x10"% ergcn? and B
the Derjaguin approximation predicts the right trends and=55.77x 107 1% ergcri? for the Lennard-Jones interaction
provides physical insight into the underlying mechanismsof carbon atoms. Very similar values were extracted from an
but overestimates both the potential depth and interactioanalogous procedure for graphite sh¢e®. For the follow-
range. ing it is useful to characterize the Lennard-Jones potential by

We also show that crystals of hollow nanoparticles will its hard core diametes=(B/A)® and its potential depth
have unusual material properties. Their heat of sublimatior=A%/4B. For carbon, 0=3.47 A and e=4.59
(which is already unusually high for fulleritscales linearly X 10 '® erg=—0.11kT (wherek is the Bolzmann constant
with R; at the same time, their surface energvhich for  andT the room temperatuye
fullerite is already smaller than for graphitecales inversely In order to use the atom-atom potential from Ea)
with R. Thus, with increasingR, it becomes more and more within the framework of a continuum approach, one has to
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FIG. 1. Schematic drawing of two multiwalled hollow nanopar-
ticles with center-to-center distance particle radiusR, and wall -0.1
thicknessh. 3 A 5 7 . 8
know the density of atoms. For single-walled and multi- r[A]
walled nanopatrticles, area densgyand volume density 5
will be used, respectively. The in-plane elasticity of a carbon V kT (b)
sheet is so strong that its in-plane structure is hardly changed [kT]

when the sheet is wrapped onto a nonplanar geometry. For 0
example, the area density of carbon atoms in a buckyball,
0=60/47R?=0.38 A2, with radiusR=3.55 A, is very

close to the one in graphite. The area density for both, WS °

and MbS is ¢=0.35 A2 it is close to the value for car-

bon, since the effect of larger bond length is offset by the -10

existence of triple layers. For future purpose we define a

dimensionless area density of atoms ¢o? and a dimen- 4 6 8 0 12 M4
sionless volume density of atonys=po®. The two densities r[A]

are related by = ra/l, wherel is the distance between lay-
ers. For carbon and inorganic fullerenks,3.4 and 6.2 A,

';eSpeCt'Vely' For Carb_on one then _f'nd$4'56 and x nitude weaker than the Girifalco potential for buckybélls), solid
=4.60. For the metal dichalcogenidesis roughly the same, line]. A Lennard-Jones potential with the same zero-crossing and

but x is smaller by a factor 2 when compared with carbon. Ingotential depth as the Girifalco potentiab), dashed ling shows
any case, the dimensionless densities squared roughtifat the Girifalco potential is rather short ranged. The vertical line

amount to one order of magnitude. indicates that the potential diverges at a finite value of separation.
Although the molecular structure of the metal dichalco-

genides is quite different from that of carbon, the values fofyheres=r/2R is the distance in units of the particles’ di-

o ande are expected to be similar. From the Lennard-Jonegmeter. Herev=h/o does not appear, since the shell is as-

potential given above, the effective Hamaker constant fosymed to be infinitely thin. For buckyballsy=2R/o

carbon follows agr’p?A=3.9x10"** erg~100kT. Indeed =2 05. Then the potential minimum is @=10.06 A with

this is the right order of magnitude for the Hamaker constang potential depth o¥/,= —4.44x 1013 erg= —10.7%T. In

of vdW solids in vacuun(21]; thus in the following we Fig. 2(a) we plot the Lennard-Jones potential from Ed)

assume that the values afande given for carbon will give  for carbon atoms and in Fig(1®) the Girifalco potential from

the _right order of magnitude results for the metal dichalcogq. (2) for buckyballs. The integration over the given geom-

genides, too. etry strongly changes the character of the interaction poten-

tial: it is now two orders of magnitude stronger and rather

B. Full interaction potentials short ranged. The concept of a small interaction range will be

When integrating Eq(1) over the volumes of two hollow quantified below. The small width of the potential well be-
nanoparticles, we introduce two additional length scales: th§0mes evident when compared with a Lennard-Jones poten-
radiusR and the thicknesh. Figure 1 depicts the geometry tial with same effective diameter and potential defihe
of two multiwalled hollow nanoparticles. For the following it dashed line in Fig. @)]. The geometrical effect on the ef-
is useful to define the two dimensionless quantitigs fective interaction potential is a subject well known from
—2R/o and v=h/o, that are the particles’ diameter and colloid science. _ _ _
thickness, respectively, in units of the Lennard-Jones hard We now calculate the vdW interaction between multi-
core diameter. Since<R, we have <. The Girifalco walled hollow nanoparticles, that is between two thick shells.
potential for two single-walled nanoparticles of radigs Ve consider two ball8;(i=1 and 2), each of which con-

separated by a distancefollows from integrating Eq(1)  Sists of a thick shelf; and a coreC; , which is a ball with
over two spherical shell§8]. Using the definitions given smaller radius. Then the interaction between the two shells

FIG. 2. Different van der Waals interaction potentials: the
Lennard-Jones potential for carbon atofasis two orders of mag-

above. this can be written as can be expressed in terms of interactions between several
' balls:
2 1 1 2
— 2.2 = — — — = _

Vg(r)=m?7%e 45778<S(S— 1)9+ oo 1)9—?)> Vs, s,=Ve,.8,~ Vc,.c,~ Ve,.5,7 Vs, .c,= Ve, 8,7 Ve, c,

1 1 1 5 _(Vcl,Bz_Vcl,cz)_(Vsl,cz_Vcl,cz)

-— + -—11, 2 - _ _
3772(3(8—1)3 s(s+1)3 54) @ Ve,.8,7Ve,.c,” Ve, 8,7 Ve, oy )
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For two identical thick shells, the last two terms are identi- 0.4
cal. For two identical shells of radid® and thicknes#, we V
can write Eq.(3) as
0.0
Ve(r)=Vg(r) +Vr-hr-n(r) =2Vrr-n(r).  (4) 0
In order to proceed, we must integrate the Lennard-Jones
potential from Eq.(1) over two balls of unequal radii. The -08

two integrations can be done analytically, but lead to rather '
lengthy formulas which are given in the Appendix. Equa- 0 05 1 15 g 2
tions A2 and A3 together then yield

FIG. 3. Interaction potential for single-walled nanoparticles:
VRle(r)=4EX2[UGV%e21R2(r) _Vgle(r)], (5) IC_;irifalco potential(full line) aEd Derj.aguin a_pproximatiofd_ashed
ine) for different values ofy=2R/c: from right to left, =2.05
(buckyballg, 4, and 10. All potentials are scaled such that the Der-
which can be used in Eq4) to obtain the full potential jaguin approximation has its minimum atl. With increasingy,
Ve(r) in analytical form. This diverges at=2R, has a mini-  the potential well of the full potential falls into the range described
mum at intermediate distances, and decays at large distanceythe Derjaguin approximation.
as

Vp(r)=m2x?e

1 ( 1 ) 1
12607° | (s—1)7  (s—1+2vl7)’

16
V,:(r)=—7T2)(2€§V2(4V2—6V77+3772) (6)

(7s)®’

2 ) 1( L, 1
o . . .  (s— 7] 6ls—1 s—1+2v/
which is the vdW interaction between two bodies of volume (s=1+wvlm) Vi

47[R®—(R—h)3]/3 each. In the two-dimensional limh 5
—0, the full potentiaMg between two hollow nanoparticles — —) ) 9)
becomes the Girifalco potentidlg from Eq. (2) between s—1+viy
two spherical shell§where the dimensionless volume den-
S|ty X relates to the dimensionless area deng't)by X We now discuss two limits of this result. Forcl, that is
=ra/h). In general, the full potentiaV/f is very compli- h—0, we obtain the Derjaguin approximation for the Giri-
cated; in order to gain some physical insight, it is useful tofalco potential from Eq(2),
consider its Derjaguin approximation. 2 1 1 1
Glp)— 2,2
V3(r)=m1%€ 257 (5-1° 37 (-1 , (10

C. Derjaguin approximations

The Derjaguin approximation relates the interaction bewhere we have useg= ro/h in order to obtain the two-
tween curved surfaces to the one between flat surfaces if ttdéimensional limit. The same result follows formally by ex-
distancer — 2R between the curved surfaces is smaller thampanding each of the two terms of the full potential from Eq.
the radii of curvatureR, i.e., if s<2. The interaction energy (2) separatelyarounds=1. The potential minimum in the
per unit area between two planar films a distane@art and  Derjaguin approximation is found by minimizing in E4.0)

each of thicknesé can be easily calculated to be for s
6 l 1 2 2 1/61 \/R)
W(z2)=mx%€| —| —=+ - :+—) - =— —1%7%en.
(2) X 90(28 (24208 (z+h)? Sp=1 5 o Vo g T TEn (11
1/1 1 2 The Derjaguin approximation is valid fa<2; thus it will
3 ;Jr (z+2h)2_(z+h)2 : (M) describe the potential well correctly #,<2, that is if »

>1. From Eq.(11) we see that in this limit of larg&, the
equilibrium distance of closest approach,R(®;—1)
The Derjaguin approximation integrates over one of the two:(2/5)1/50=2_98 A, is independent dR. Moreover it fol-
surfaces, and evaluat&¥(z) at the distance to the nearest |ows that in this limit, the potential depth scales linearlyRin
point on the other surface; for two spheres of equal iadii  In Fig. 3 we plot the Girifalco potential and its Derjaguin
reads approximation rescaled by, and for =2.05, 4, and 10.
While in the first case€buckyballg the difference between
o full potential and approximation is still considerable, for the
dz Wz). (8)  last case it is already very good. Comparing values obtained
2R ; . ) .
numerically from the full potential with the values from its
Derjaguin approximation from Eq11), we find that the ap-
Using Eq.(7) in Eq. (8), we find proximation fors, is very good even for buckyballs witR

VD(r)=wRJ

r—
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=3.55 A (=2.05). The approximation fo¥, deviates by

34% for buckyballs, but only by 10% f®R=13.74 A (y 04
=7.92) and by 1% foR=147.44 A (7=84.98). \Y
We now consider Eq8) in the limit v>1, that ish>¢. 0.0
This is the Derjaguin approximation for a nanoparticle which
is completely filled: 04
1 1
VE(r)=m2x2e - . 12

o =X 12607° (s—1)7 6(s—1) (12 0.8
Equilibrium distances, and potential deptV, again follow 0 05 1 15 2
from minimizing fors: S

161 306 ) FIG. 4. Interaction potential for multiwalled nanoparticles: Full
Sp=1+ 30 ; Vo:—TW X €7). (13 potential (solid) and Derjaguin approximatior(dashed for #

=2R/o=10 and v=h/oc=0.8 (lower curve$ and 0.4 (upper

If we compare this result with Eq11) for single-walled curves. All potentials are scaled with the same factor as in Fig. 3.
nanoparticles, we see that apart from the numerical prefathe Derjaguin approximation improves with increasing wall thick-
tors and the change from area to volume density, for single?®SS-
walled and multiwalled nanoparticles the Derjaguin approxi-
mation basically yields the same results for equilibrium
distances, and potential depth/y. In particular, in both
cases the equilibrium distance is independerRahd on an case, i.e., Eq(11)
atomic scale, and the potential depth scales linearl. ifhe - ’”' t h ' | | material ties. It h
reason for this agreement is that in the situation of close ulerite has several unusua’ materia’ properties. 1t has a
. S o —yery high heat of sublimatiorf40.1 kcal/mol, five times
approach described by the Derjaguin approximation, the S'ZFarger than typical for vdw solids[24], and it is the
of the gap between the particles is approximaielySince softest carbon structure; its volume ’compressibility 7
the vdW interaction between two films saturates on the SaME J 0-12 c2/dvn is three a’md 40 times the values for araph-
length scale, it does not really matter how many walls therée y grap

are. Moreover there is a cancellation of two effects: in theIte and diamond, respectivel¢5]. We now investigate how

case of multiwalled particles, more matter is present and th%hese quantities scale for differeRtandh. The calculation

vdW energy increases. However, in our description of thickgrrogtea ?ctig ;‘: ]fg(r:el‘igEigéjogjémsglﬁigg'e \gvr?e?ssurgrg tgﬁ
walls, matter is now distributed uniformly in space and the Y ' gy perp

effect of the first layer is smeared out, so the vdW energ;}'de IS
decreases. In reality both descriptions are idealizations; how-

ever, since they essentially yield the same resultsfoand u=
V,, the overall description of the potential well should be
sufficient. Note that in both cases, the temperature scale 1

Vo/k (wherek is the Boltzmann constanis approximately =5[12V(r)+6 V( Var)+24V(\3r)+---], (14
87nTr, whereTg denotes the room temperature. Thus if a

gas-liquid coexistence exists for the systems under considewhere the sum is over all fcc Bravais lattice sitexcept the
ation, it will do so at several thousand K. In fact, detailedorigin, which is occupied by the particle itsglfand we
treatments for buckyballs predict gas-liquid coexistence tgrouped the lattice sites into shefi$ of equal distancér;}

proximation resulted in very similar results for the potential
well of single-walled and multiwalled nanopatrticles, it is suf-
ficient for the following to use the potential for the former

N| -

> nV(ry)

exist close to 2000 K. to the origin, where sheli containsn; different sites. We
explicitly give the nearest, next-nearest, and next-next-
Il. MATERIAL PROPERTIES nearest neighbor shells. Heras measured in units af,,,

) ) - _ the nearest-neighbor distance in the crystal, which follows

A solid forms at high densities or low temperatures sinCégm du(r,,)/dr=0. In the following we will use the
.then clqse—pgcked particles can benefit from the attraCtiVﬁearest-neighbor approximationu~6V(r). Then r,,
interaction W|tho_ut losing too much entropy. Many pf the =2Rs, and u=6V,, with s, and V, from Eq. (11). The
physical properties of solids are essentially determined bYattice constant is then given = \2r, .
the properties_ of the potent_ial WeII._ We showe_d above that The heat of sublimation per Fr?ol is simphAH
for a large radiusk the potential well is well described by the _ NAU(T ) = 6NV, with Avogadro's numberN,=6.02
Derjaguin approximation. We now proceed to predict the, 107 mol~ L. Therefore
material properties of such solids. By using the Derjaguin ' '
approximations rather than the full potential, we are able to 2410 5
derive analytical formulas which show the scaling with the AH= 3 7 Na72e€n. (15
different parameters involved; although they are strictly valid
only for n=2R/o>1, our results predict the right trends and Since in the nearest-neighbor approximation the heat of sub-
orders of magnitude even for small radius. For more precisémation depends only on the direct interaction between the
results for smalR (relevant to buckyballsit is easy to treat  particles and not on any geometrical aspect of the crystal
the full problem numerically8]. Because the Derjaguin ap- lattice, it scales linearly witlR. Thus we find that the heat of
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sublimation, which is already unusually high for buckyballs, roughening temperature remains a certain fraction of the
increases even more with radil&s Using 7=4.56 and»n melting temperature with varyinB, as is usually the case.
=2.05 for buckyballs yieldsAH=58.46 kcal/mol; given

that we use 'the n'earest-neighbor and Derjaguilj approxima- IV. PHASE BEHAVIOR
tions (which is valid for >1), the agreement with the ex-
perimental value of 40.1 kcal/m@R4] is surprisingly good. For the simple Lennard-Jones interaction of Eb), we
The bulk modulus follows ag26] can rescale the potential with the well depttand the dis-
7 tancer with the hard core diameter, to write
P 2 94U
B=-V_+=g—"5(nn) 1\12 [1\°
NV 9y gr? Vo =4=| (<] | (19

V26 *Vp 2057272 €
R (S0) = s 3 (16) which has no other free parameters. The resulting phase dia-
9(2R)"sy s 0 o gram in reduced temperatute=kT/e and volume density
_ ®=mpal6 (wherep is density ands hard core diametgr
For 7>1, so~1, andB becomes independent & There- s yniversal; the phase diagrams for all Lennard-Jones sys-
fore, its scale must be set leyo® from dimensional consid-  {ems are identical when plotted in units pand ® (law of
erations. The volume compressibility follows #=1/B.  corresponding statesin Sec. I1B we derived effective in-
Extrqgglatmg this to buckyballs, we find3=3.65 {eraction potentials for single-walled and multiwalled nano-
%10 an/dyn, which again is in surprisingly good particles. Single-walled nanoparticles interact via the Giri-
agreement with  the  experimental ~valuef=7  faico potentialV from Eq. (2). Although derived from the
X107* cnf/dyn [25]. _ Lennard-Jones potential from E€L) for two single atoms,
The energy per area needed to cleave the crystal into twekjs involves an additional length scale: the particle diameter
along lattice planes perpendicular to a given direction iSR— 5. Multiwalled nanoparticles interact with the com-
twice the surface energy for this direction. For simplicity plicated potentiaVg given by Eqs(4) and(5). Here another
we will consider only thg(111) direction. Before doing so, length scale enters—the wall thickness vo-. Since they
we first discusgy for the layered material. Using the nearest-nolve more than one length scale, the potentigisand Vg

neighbor approximation, we have to determine the energyo not lead to a law of corresponding states, and their phase
per area at the equilibrium separation of two planar sheetehavior needs closer inspection.

Taking the limith—0 in Eq. (7), using x=7/h and mini- In Sec. IIC we showed that for larg®, the Derjaguin
mizing for distance, yields approximations given in Egs. 10 and 12 fdg and Vg,
respectively, give good approximations of the potential well.
3 L€ 17) In Sec. Il this model was used to predict certain physical

6T T ?' properties of solids which are essentially determined by the

properties of the potential near its minimum. In regard to
Again the combinatiore/ o2 follows from dimensional con- Phase behavior, the situation is more complicated, since now
siderations. For carbon we fing=150 erg/crd, which  the entire range of the potential matters. However, recent

compares quite well with the experimental value of work [5,7,6] suggests that for an isotropic interaction poten-
=130 erg/cr for graphite[23]. tial with hard core repulsion and some attractive component

We now consider thé111) direction of the fcc solid. for which potential depth and hard core diameter have been

Since a given molecule in a corresponding lattice plane hadSed to scale temperature and density to reduced units, the
three nearest neighbors in the adjacent planean be esti- topology of_t'he phase diagram will be _essentlally determined
mated to be ¥,/2 times the area density in a close—packedby one additional feature of the effective potential, namely,

lane with a nearest-neighbor distance, 2/4/3r2.: its interaction range This quar?ti'Fy is WeII_ defined only f(_)r
P g &R V3ron square well potentials, where it is the ratio of the well width

to the hard core diameter. For continuous potentials, the fol-
V10 1 5y10 1 . L ’
y= _7727-22_ iz =—— = 7G- (18) lowing definition has been employdd]: 6= (r;—rg)/ro,
3V3 sima? 93 iy wherer  is the position of the potential minimum, angthe

distance at which the potential has fallen to 1/100 of the
For »>1, sy=~1, and the surface energyscales inversely potential depth at,. Note that the interaction rangé is
with R Extrapolating to buckyballs, we findy independent of the potential dep¢hFor the Lennard-Jones
=115 erg/cr, that is a value smaller than the surface en-potential given in Eq(19), §=1.42, and for the Girifalco
ergy vg of graphite. Although the interaction becomes stron-potential for buckyballs given in EqZ2), §=0.83. In the
ger asR, the number of vdW contacts decreases & 1and  framework of a variational scheme for the double Yukawa
the geometrical effects dominates. With increasiRg it potential, it was found that the gas-liquid coexistence disap-
hence becomes easier to cleave the crystal. Note, howevearears for6<0.4, and that an isostructural solid-solid coex-
that this does not lead to an enhanced roughening of thistence appears fof<0.02[7]. Similar values were found
crystal surface. In fact the roughening temperature scales dsr the square well potential both in a simple van der Waals
ya?~R, with a~R being the lattice constafi22]. Since the theory[6] and in extensive Monte Carlo simulatioft.
melting temperature scales with the potential depth which in The physical reason for the disappearance of the gas-
turn scales withR, both temperatures scale wi) and the liquid coexistence is well known. The fluid-solid phase tran-
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0.8 which was derived within the framework of a sophisticated
t (a) variational scheme for the double Yukawa potential: the gas-
liquid coexistence disappears if the interaction raadells
below 6~0.4. The basic justification for our approach lies in

0 G L S the fact that the interaction potentials under consideration
can be fit well by the double Yukawa potential. This poten-
tial in fact has three parametdrg|, one of which scales the

0.4 potential depth. The remaining two can be used to adjust the

\ position of the potential minimum and the interaction range.

The zero crossing of the potential can be identified with the

0.2 T T T hard core diameter, and for the double Yukawa potential
0.0 0.2 0.4 ¢ 06 equals 1 by definition. For colloids as well as for the hollow
nanoparticles discussed in this work, the position of the po-
tential minimum should always be close to the hard core

0.8 diameter, that is a little larger than 1. Therefore, we are left
t (b) with only one degree of freedom, which in our approach can
be used to fit the interaction range The interaction range

cally. The corresponding Derjaguin approximations can be
used to gain some physical insight into the numerical results.
In fact, for very largeR the Derjaguin approximation should

0.6 F S for the full potentialsVg andVg can be determined numeri-
T

0.4 correctly describe not only the part of the potential which
contains the potential minimum, but also the part which con-
tains the interaction range.

0.2

T T We first discuss single-walled nanoparticles. The Der-
0.0 0.2 04 ¢ 06 jaguin approximation to the Girifalco potentisl; is given
in Eg. (10). Combining this with the result for its potential
FIG. 5. Phase diagranis) with and (b) without gas-liquid co-  depth[Eq. (11)], gives
existence as a function of reduced temperatuar&T/e and volume

fraction ¢=mpc®l6. G, L, S, and F denote gaseous, liquid, VE(r)=V 2 1 3 1
solid, and fluid phases, respectively.(b) the attractive interaction pll)=Vo ~ 19 an 3
potential is so short ranged that the gas-liquid coexistéaitieough 5V10[7(s—1)1° V10[7(s—1)] 20

existing by itself is suppressed in the overall phase diagram by the

fluid-solid coexistence. For a double Yukawa potential, the Crossthus we find that for largeR, the particle diameter R
over between the two topologies of the phase diagram occurs when : ' . : .
the interaction range decreases below the critical vaki®.4. 70 Simply serves to rescale the separation distance. With

sg from Eq. (11) and s;=1+4.56/n determined numeri-

sition is driven mainly by changes in free volume: at highcally, we find

densities, the solid becomes more favorable since its ordered

i ; 3.70 3.70 1
structure provides more space for fluctuatiofiserefore, b=——— =" 10| —]. (22)
hard sphere systems exhibit a entropy-driven fluid-solid tran- n+ (25 7 7’

sition). In contrast, the gas-liquid coexistence is driven by
the attractive interaction: at low temperatures, the fluid phas@hus we conclude that the dimensionless interaction rahge
separates so that the gas and liquid phases can profit entrogirales inversely withR for largeR. This result can be under-
cally and energetically, respectively. The critical temperaturestood as follows: on an absolute scale, the interaction range
for the fluid-fluid coexistence scales linearly with the depthis essentially constant since it corresponds to the range of the
of the potential, and also depends on its higher momentd.ennard-Jones interaction between atoms. It is made dimen-
Even if the potential is only slightly attractive, the critical sionless by rescaling with the position of the effective poten-
point will exist by itself. However, the corresponding gas- tial minimum, which is fixed by the Lennard-Jones potential
liquid coexistence will survive in the overall phase diagramclose to R; therefore, the dimensionless interaction radge
only if the critical temperature lies above the temperature ascales inversely witlR. In Fig. 6 we plot the interaction
which the fluid coexists with the solid at the critical density. range of the Girifalco potential and the result from the Der-
In Fig. 5 we schematically depict the two possible outcomegaguin approximatior{Eq. (21)]. Although the curves col-
which we have to consider in this work. lapse onto each other for largg for »=2.05 they disagree
The calculation of phase diagrams from various interacconsiderably §=0.83 versuss=1.27). Guerin[27] fit the
tion potentials has reached a high level of sophistication, anirifalco potential to a double Yukawa potential for which
different schemes are readily available for a detailed analysise foundé=0.56. The difference between this value for the
(compare Ref[13] for an overview of different methods fit and 6=0.83 for the Girifalco potential arises since the
applied in the case of buckyballdn the following we ask fitting procedure does not preserve the value of the interac-
how the gas-liquid coexistence disappears from the phagén range. The approach used in this work amounts to using
diagram of hollow nanoparticles as a functionRfandh.  the three free parameters of the double Yukawa potential to
For this purpose, it is sufficient to adopt the simple criterionfit it to the potential deptle, the position of the minimum,
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FIG. 6. Double logarithmic plot of the interaction rangeof
single-walled nanoparticles as a functionpf 2R/ ¢ for the Giri-
falco potential(full line) and its Derjaguin approximatiofashed 20
line). The dotted lines a6=0.4 and§=0.02 separate the long-,
intermediate-, and short-ranged regimes. Buckyballs with2.05
still have the gas-liquid coexistence which disappears onlysfor
<0.4; that is,7>7 (R>12 A). 0

0 10 20 30 40 4 50

and the interaction rangé of the potential under investiga-
tion, thus preserving the value of the interaction range. Fig- 100
ure 6 shows that for~7, the full potential ha$~ 0.4, and §=0.1
the liquid-gas coexistence is expected to disappear. This cor- 1y
responds tR~12 A | i.e., Ggo. On the basis of these re-
sults, we have to conclude that buckyballg, @re in fact 80
rather far away from losing their gas-liquid coexistence.

We now proceed to discuss multi-walled nanoparticles.
The Derjaguin approximation is given in E¢Q). Since it 60 |
involves one more length scale, it cannot be treated in the
same way as the Derjaguin approximation for the Girifalco
potential. However, we showed above that the potential satu-
rates for largeh. The limit h> ¢ is given in Eq.(12). Com-
bining this with the result for the potential degdtiqg. (13)]
gives

40

VE(r) =V 7 1 7 20 ¢ .
r)= - .
P % 1260305 [7(s—1)]7 630" 5(s—1)] b)
(22 o Lo

As in the case for single-walled nanoparticleR=27no res- 0 10 20 30 40 y, 50
cales the particles separation. Wi from Eq. (13) ands, FIG. 7. Interaction rangeS of multiwalled nanoparticles as a
=1+66.18/y determined numerically, we now find function of #=2R/¢ andv=h/o for (a) the Derjaguin approxima-

65.61 65.61 1 tion and(b) the full potential. The dotted line delimits the allowed

= e (0] |- (23 regionh=<R, that is =2v. The dashed line mark6=0.4. Only
7+ (1/30) 7 7 the region between the dotted and dashed lines has a gas-liquid

. . . ) ) coexistence, whose size is overestimated in the Derjaguin approxi-
Thus the dimensionless 'mera?t'on rangscales mversgly mation. Filled nanoparticlesi(=2v) do not have a liquid phase for
with Rin both cases, although it has a larger prefactor in the,7>20 (R>35 A).

multiwalled case, so that the gas-liquid coexistence disap-
pears at larger values & for larger wall thicknes$. clude that the coexistence disappears fagr=7 (R

In Fig. 7 we plot the numerical results for the interaction~12 A) for single-walled and fom~20 (R~35 A) for
ranges of the full potentials and their Derjaguin approxima- filled nanoparticles, respectively; the crossover with increas-
tions. Different values of the interaction rangeare shown ing wall thickness is rapid and on an atomic length scale. In
as isolines in the ,7) plane, and the critical interaction Particular we now can predict that buckybalsngle walled,
ranges,=0.4 is drawn as a dashed line. The gas-liquid coR=3:55 A, 7=2.05, anch=»=0) will have a gas-liquid
existence exists only in the region below the dashed lineSoexistence, while typical metal dichalcogenides nanopar-
Both diagrams agree with the general trends which were exicles (multiwalled, R=600 A, 7=346,h=93 A, and
plained above: the coexistence disappears for l&gend ~ ¥=27) Will aimost certainly have none.
smallh, and the critical line levels off for largle. However,
the Derjaguin approximation overestimates the interaction
range, the real region with coexistence being in fact much We now briefly discuss at which values Bfand h the
smaller. From the results for the full potentials, we can con-effects investigated above may be modified by the deform-

V. ELASTIC DEFORMATIONS
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For single-walled fullerenes, the value for the bending rigid-
ity « can be extracted from molecular calculations toxbe
=1.6x10 2 erg. The value for the two-dimensional Young
modulus G can be extracted from the elastic moduli of
graphite asG=3.6x10° erg/cnt. Then we find7.=16.5,
that is considerable deformation is expected Ro¢30 A .
For single-walled nanoparticles made from metal dichalco-
genides Mosand WS, G is smaller by a factor 4 and is
larger by a factor 10; thug, increases slightlyby a factor
1.3).

For nanoparticles with a few wallss<h<R), one can
show in the framework of linear elasticity theory that
=C;h%/12 andG=C4;h, whereC,; is the in-plane stretch-

. . . ... ing elastic constant of th rr nding layered material
ability of the particles. Although fullerenelike material inter- [3%](33;?9 fr?essetaretla?io;seyizljdsespo ding layered materia

acts only through vdW forces, the resulting elastic deforma-
tions can be substantial, as shown both experimentally and

theoretically for carbon nanotubg28]. A detailed treatment 2R,
of the elastic deformation of hollow nanoparticles is difficult M=~
and relatively unexplored. Here we adopt a simple scaling

approach which was used before to investigate the mechani-

cal stability of hollow nanoparticles in tribological applica- Thus, the critical radiu}; scales linearly with the wall
tions[29]. thicknessh. The values forC,; are 1060<10™, 238x10%,

We ask when will considerable elastic deformations ofand 150k 10" erg/cn? for C, MoS,, and WS, respectively
hollow nanoparticles occur due to vdW interactions as d32]. For WS particles withh=100 A, the critical radius
function of R andh. We consider two hollow nanoparticles following from Eq. (27) is well above 1000 A.
adhering to each other due to their mutual vdW interaction, We found above that the gas-liquid coexistence disap-
as depicted in Fig. 8. The hollow nanoparticle is assumed t@ears aR~12 A for single-walled nanoparticles and Rt
be an elastic shell with preferred radiBs Its deformation ~35 A for filled nanoparticles. Our estimates for the onset
energy has two parts: a bending energy characterized by tr@f elastic effects is at least of the same order of magnitude.
bending constant, and a stretching energy characterized byTherefore, we conclude that the elastic effects will not affect
the two-dimensional Young modul@. If an external force hollow nanoparticles which do have a fluid-fluid coexistence.
is applied, the balance between these two contributions leads general, the effect of wall thickneds of multiwalled
to a localization of the deformatidi80]. For small adhesive hanoparticles is much stronger on the elastic response than it
load, the shell flattens in a contact region and the overalis on the phase behavior. Therefore, multiwalled variants are

FIG. 8. Schematic drawing of two multiwalled hollow nanopar-
ticles deformed due to vdW adhesidd.is the indentation. It fol-
lows geometrically that the contact area scales \Ritth.

—. (27)

o

C110'3> 1/2h

x’e

deformation energy scales as favorable if one wants to make use of the unusual properties
12 1/ of hollow nanoparticles without being restricted by elastic
G ffects
Eger~—g —H% (249 ©lECts:

. . . . VI. CONCLUSION
whereH is the indentation(compare Fig. 8 The vdW en-

ergy gained on deformation can be estimated as follows: In this work, we predicted the phase behavior and mate-
apart from some numerical prefactor, the adhesion energgal properties of hollow nanoparticles as a function of radius
per area is essentially’e/ o2 [this follows from minimizing R and wall thickness. The synthesis of hollow nanopar-
for distancez in Eq. (7); the limit of single walls is given in ticles is a rapidly developing field, driven by the special
Eq. (17)]. For smallH, it follows from simple geometry that Properties of particles in the nanometer range which may
the area over which the two shells approach each other scal@§ow many new applications to be developed in the future

with RH (compare Fig. B Therefore, we have [14]. Although our analysis is aimed at hollow nanoparticles
made from anisotropically layered material like carbon

x°Re (fullerene$ or metal dichalcogenide@norganic fullerenes
S o2 H. (29) it could also be applied to colloidal or biological examples of

hollow nanoparticles. Our starting point was the Lennard-
Jones interaction between single atoms, which we integrated
over the appropriate geometries in order to obtain effective
potentials for the vdW interaction between single-walled and
multiwalled nanopatrticles. The subsequent analysis was two-
fold: Derjaguin approximations for the effective potentials
[)rovided the correct scaling laws and physical insight, while
numerical investigations of the full potentials allowed us to

For single-walled nanoparticleg, has to be replaced by,
which, however, has nearly the same value. We now ca
solve Eqe=E, qw for indentationH. We then ask for the
critical radiusR; at which the indentation becomes consid-
erable, i.e., of the order of the smallest length scale in ou
problem, which iso. This yields

2R GU2, 12 1/2 make quantitative predictions.
D= —~ i (26) We first showed that crystals of hollow nanoparticles have
o X’e unusual material properties. Since the effective contact area
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and therefore the potential depth scales linearly with raRius ACKNOWLEDGMENTS
for largeR, their heat of sublimation and surface energy will

scale linearly and inversely witR, respectively. This means discussions. US.S. aratefully acknowledaes support from
that with increasingR, it will become more difficult to melt, . - o> g y ~09 PP
the Minerva Foundation. S.A.S. appreciates the support of

but easier to cleave the crystal. The thicknéshas little . X
influence here, since the vdW interaction saturates over thtehe Schmidt Minerva Center, the Center on Self Assembly

. ! sponsored by the Israel Science Foundation, and the Israel-
atomic length scale of the Lennard-Jones potential under o . .
close-packed conditions. For reasonable valudR efe pre- “U.s. Binational Science Foundation, Grant No. 97-00082/2.

dicted values for the heat of sublimation and surface energy

which for vdW solids are unusually high and low, respec- APPENDIX: INTEGRATION OF LENNARD-JONES

tively; this was already found experimentally for fullerite, poTENTIAL OVER TWO BALLS OF UNEQUAL RADII

but should be more pronounced for larger fullerenes and in-

organic fullerenes. In order to integrate the Lennard-Jones potential over two
Our discussion of phase behavior centered around the e®alls of unequal radiR; and R, and center-to-center dis-

istence of a liquid phase and the concept of the interactiofancer, it is helpful to adopt the following coordinate sys-

range. We argued that after scaling out hard core diametdem: consider a sphere of radiBscentered az=r on thez

and potential depth, the interaction range is the relevant fea@xis. This sphere can be decomposed into caps of spherical

ture of an effective potential which determines phase behawshells of radius ' centered around the origin. Integrating out

ior. We showed that for a large radil® the interaction the two angles on the spherical caps leaves us with the fol-

range scales inversely witR, and again is little affected by lowing integral[20]:

thicknessh. The numerical analysis supported this finding,

and allowed us to calculate the interaction range as a func- o (T+R R2—(r—r')2

tion of R and h. Using recent work on the double Yukawa f dvi(r’)= _f dr'r/2————f(r").

potential, which can be fit well to our potentials, we could sphere rJe-r r’

identify the disappearance of the liquid phase with a dimen- (A1)

sionless interaction rangé~0.4. We then found that the

liquid phase will disappear @&&~12 A for single-walled  For example, forf(r)=1 we obtain the sphere volume
particles and aR~35 A for filled nanoparticles. Although 4.-R3/4. To integrate a giverf(r) over two spheres, the
several theoretical studies investigated the phase behavior gf e integral has to be used twice, where in the second

buckyballs as a likely candidate for the nonexistence of th‘?ntegrationf(r) is the result of the first integration. For
liquid phase in a noncolloidal system, we conclude thatf(r)zllre we find[20]

buckyballs withR=3.55 A are in fact rather far away from
losing their liquid phase.

We wish to thank S. Komura and R. Tenne for useful

Finally, we showed that the wall thicknebshas a strong 6 w2 2R1R, 2R;R,
effect on the elastic properties of hollow nanoparticles. Us- VRle(r): 6 r2— (R, +R,)?2 + r2— (R~ R,)?
ing scaling arguments for elastic shells with preferred radius 1 v
R and the known scaling of the elastic moduli with we r2— (R, +R,)?
predicted that elastic effects should not interfere with the +lo 5 5| (A2)
phase behavior of thogaorganio fullerenes which do have r“=(Ri—Ryp)

a liquid phase.

Despite the widespread theoretical interest in the phasgng, forf(r)=1/r12
behavior of buckyballs, little experimental work has been
done on the phase behavior of hollow nanoparticles. Since 16m2R3R3
the potential depth scales linearly with the radRjghe cor- V1R2R (r)= 12
responding energy scales are large and experiments have to * * 472512~ (R;—Rp)?)"(r?+(Ry+Ry)?)’
be conducted at temperatures of several thousand K, where X[ —35R2—R2)8(5 R+ 14R? R2+5 R%)
their mechanical stability becomes a limiting factor. How- . 42 o
ever, the temperature scale can in principle be lowered by up —700R;—Ry)*(R;+Ry)*(RI+R3)
to two orders of magnitude by dispersing the nanoparticles in % (R‘lu_ 10 Rf R§+ R‘Z‘)r2+ 56( Ri_ R%)Z

a fluid medium of high dielectric constafi2l]. Regarding 8 6 2 44 9 6
hollow nanoparticles which are impermeable to solvent, it X (70R; —49R; R~ 762R; R;—49R1 R;
would not be difficult to extend our analysis to the case of +70R3)r*—4(Ri+R3)(875R5— 11 844RS R3
vdW interactions between spatial regions with three different 44 2 56 8\ .6
dielectric constants instead of two. Our analysis should be +22898R R;—11844R; Ry +875Ry)r

directly applicable to the vdW interaction in systems with —2(2275R%+ 13 552RS R3— 38 502R] RS
hollow polyelectrolyte and silica shells, whose walls are per- i1 2R2 R8-+ 2275R8) 18+ 28 R2+ R2
meable to solvenfl7,18. However, in this case additional 395 4 L2 2 25 - 4 8(10 R
effects like electrostatic interactions might have to be taken X(325R;—838R7 R3+325Ry)r

into account. Moreover, elastic and even plastic effdotw —16825R%— 77R2 R2+ 25R%)r 12

yield strength due to noncovalent bonding in the ghaie > 214 16
expected to be more prominent for these systems. —42QR1+Ry)r="+525r ). (A3)
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