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Abstract
Randomwalks are often evaluated in terms of theirmean squared displacements, either for a large
number of trajectories or for one very long trajectory. An alternative evaluation is based on the power
spectral density, but here it is less clear which information can be extracted from a single trajectory.
For continuous-time Brownianmotion, Krapf et alnowhavemathematically proven that the one
property that can be reliably extracted from a single trajectory is the frequency dependence of the
ensemble-averaged power spectral density (Krapf et al 2018New J. Phys. 20 023029). Their
mathematical analysis also identifies the appropriate frequencywindow for this procedure and shows
that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The
authors have verified their analytical results both by computer simulations and experiments.

Randomwalks are one of themost central concepts inmodern physics. In particular, they are the key concept to
describe transport processes in complex physical systems, ranging from electrons in solids and colloids influids
to tracer particles in the geosciences and aerosol particles in the atmosphere of the earth. Another application of
high relevance ismicroscopic transport in biological cells [1]. The threemost common techniques tomeasure
transport in living cells are single-particle tracking, fluorescence correlation spectroscopy and fluorescence
recovery after photobleaching, each of which requires in-depthmathematical analysis to correctly analyze the
experimental data [2]. For example, all of these techniqueswere instrumental in demonstrating that the crowded
environment in cells leads to sub-diffusion of its constituents [3–6]. From these different approaches, single-
particle tracking has the special appeal that itmight not require any ensemble averaging. As spatial and temporal
resolution of single-molecule tracking are rapidly increasing due to experimental advances [7], one has to ask
how themeasured trajectories can be quantitatively analyzed. Similar questions about single-trajectory analysis
arise inmany other contexts, for examplewhen analyzingmusic, earthquake recordings or stockmarkets.

Usually the study of stochastic trajectories starts with an analysis of themean squared displacement (MSD),
which for Brownianmotion reads 〈x2〉=2Ddt, withD being the diffusion coefficient and d the spatial
dimension. This scaling of distancewith time is typical for continuous-time Brownianmotion and serves to
distinguish it fromother randomprocesses, whose scaling∼tα deviates from the standard valueα=1. For
example, biomolecules in cells often show sub-diffusionwith a typical exponent ofα=0.7 [1, 6]. For Brownian
motion, it has been established early that a sufficiently long single trajectory can be used to extract the ensemble
value for the diffusion coefficient [8].

Obviously, theMSD is only one out ofmany quantities that can be used to characterize a stochastic process.
Another standard procedure in the theory of stochastic processes is to investigate the power spectral density
(PSD), that is to Fourier-transform the time signal and to study its dependence on frequency f. It is well known
that for standard Brownianmotion, the ensemble-averaged PSDwill obey a∼1/f β power-law scaling with
β=2.However, it was not clear before if this scaling can reliably be extracted from a single trajectory, because
the corresponding distribution functions are very broad. This question nowhas been answered positively by
Krapf and coworkers [9]. Theirmathematical analysis also has resulted in the identification of the appropriate
frequencywindow that now allows us to reliably extract the correct exponent, for examplewhen tracking single
biomolecules in cells. In addition, theirmathematical results also suggest how to extract the diffusion coefficient
D from aPSD-analysis.
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In detail, Krapf and coworkers succeeded for thefirst time in calculating themoment-generating function
and the full probability density function of the single-trajectory PSDof continuous-time Brownianmotion as a
function of frequency and observation time. They found that for sufficiently long trajectories, the single-
trajectory PSD S( f ) is proportional to its known ensemble-meanμ ( f ), with the frequency dependence being
solely contained inμ ( f ). The proportionality factor depends linearly on the diffusion coefficientD and a
fluctuating dimensionless amplitudeA:
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Thus, the frequency dependence of the ensemble PSD can already be extracted from a single sufficiently long
trajectory, whereas the diffusion coefficientD is occluded by the random scatter of the fluctuating amplitudeA
(see figure 1). However, the exact solution byKrapf and coworkers also gives the probability distribution of this
scattering amplitude in terms of special functions, thus the statistics of the amplitude is now known exactly.
Although thismeans that several trajectories are needed to extract the diffusion coefficientD from aPSD-
analysis, this nowbecomesmuch easier because a fewmeasurements are sufficient to estimate the full
distribution.

Anothermatter of high practical relevance is the question overwhich frequencywindow the power-law
exponent can be extracted.Here the authors derive both a lower and an upper limit. The lower frequency limit
ensures that in an appropriate expansion the scattering amplitudeA becomes indeed independent of frequency
and observation time, giving rise to the above power-law scaling. In this regime the coefficient of variation of the
single-trajectory PSD loses its frequency dependency and converges to its asymptotic limit to any desired
accuracy. For discretized Brownian trajectories, which corresponds to the use of a camerawithfinite framerate,
an upper frequency limit is necessary, to ensure convergence of the discretized PSD to its continuous-time
counterpart.

Finally, the authors aimed at verifying theirmathematical results. They first did this by extensive computer
simulations, getting excellent agreement with the analytical results, both for the power-law exponentβ and the
distribution of the scattering amplitudeA. In particular, they showed how the procedure works for different
projections (e.g. using one- or two-dimensional projections of a three-dimensional Brownianwalk). Very
importantly, in a second step they conducted experiments, inwhich polystyrene beads of diameter 1.2 μmwhere

Figure 1 (A)Continuous-time Brownianmotion is the standard type of a randomwalk. (B) Its single-trajectory power spectral density
exhibits a power-law decaywith exponentβ=2 and a realization-to-realization amplitude scatter. (C)The probability distribution of
the amplitude has been calculated analytically andmeasured experimentally. (D)An ensemble average allows one to also determine
the diffusion coefficientD.
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tracked in aqueous solution. They not only were able to confirm the expected resultβ=2 from each single
trajectory, but they alsomeasured exactly the predicted fluctuations for the scattering amplitudeA. This led to an
estimate for the diffusion coefficient ofD=0.373 μm2 s−1 (from averaging over 150 trajectories), which agreed
verywell with the resultD=0.365 μm2 s−1 from a traditionalMSD-analysis.

In summary, the new results byKrapf and coworkers are a completemathematical analysis of the single-
trajectory PSD, clearly laying outwhat we can learn from it (i.e. the scaling exponentβ) andwhat not (i.e. the
diffusion coefficientD). Equally important, their work gives us very detailed instructions on how to do this in
practice and is in excellent agreementwith experiments. Themain limitations of these new results are that they
only apply to Brownianmotion. Thus, it remains to be seen howmuch of this elegant analysis can be carried over
to other randomwalks of interest, in particular to the sub-diffusion usually observed for biomolecules in cells,
which are believed to result frombroad distributions of waiting times. Another important class of randomwalks
of interest would be fractional Brownianmotion, which can be either super- or sub-diffusive. As this work
suggests, there is hope that in the long run, wemight achieve a completemathematical understanding of the PSD
for all of these important classes of randomwalks.
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