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Abstract
The spatiotemporal oscillation patterns of the proteinsMinD andMinE are used by the bacterium
E. coli to sense its own geometry. Strikingly, both computer simulations and experiments have recently
shown that for the same geometry of the reaction volume, different oscillation patterns can be stable,
with stochastic switching between them.Herewe use particle-based Brownian dynamics simulations
to predict the relative frequency of different oscillation patterns over a large range of three-
dimensional compartment geometries, in excellent agreement with experimental results. Fourier
analyses as well as pattern recognition algorithms are used to automatically identify the different
oscillation patterns and the switching rates between them.We also identify novel oscillation patterns
in three-dimensional compartments withmembrane-coveredwalls and identify a linear relation
between the boundMin-protein densities and the volume-to-surface ratio. In general, ourwork
shows how geometry sensing is limited bymultistability and stochastic fluctuations.

1. Introduction

The bacterialMin-proteins are awell studied example of a pattern-forming protein system that gives rise to rich
spatiotemporal oscillations. It was discovered as a spatial regulator in bacterial cell division, where it ensures
symmetric division by precise localization of the divisome tomidcell [1]. The dynamic nature of this protein
systemwas demonstrated by live cell imaging inE. coli bacteria, where these proteins oscillate along the
longitudinal axis between the cell poles of the rod-shaped bacterium, forming so-called polar zones [2–5].

Most bacteria use a cytoskeletal structure, a so-calledZ-ring, for the completion of bacterial cytokinesis [6].
This Z-ring self-assembles from filaments of polymerized FtsZ-proteins, the prokaryotic homolog of the
eukaryotic protein tubulin [7], which serve as a scaffold structure formidcell constriction and the eventual
septum formation in themidplane. If successful, this process creates two equally sized daughter cells with an
identical set of genetic information [8]. A necessary prerequisite for successful symmetric cell division is hence
the targeted assembly of FtsZ towardsmidcell. InE. coli cells this ismediated by two independentmechanisms,
nucleoid occlusion and the dynamic oscillation of theMinCDEproteins [5, 9, 10].While nucleoid occlusion
prevents division near the chromosome, theMin-system actively keeps the divisome away from the cell poles
through theMinC-protein acting as FtsZ-polymerization inhibitor [5]. The characteristic pole-to-pole
oscillations create a time-averaged concentration gradient with aminimal inhibitor concentration ofMinC at
midcell, suppressing Z-ring assembly at the cell poles [3–5]. AlthoughMinC is indispensable for correct division
site placement, it acts only as a passengermolecule, passively following the oscillatory dynamics ofMinD and
MinE [2, 3, 11].

On themolecular level, the oscillations emerge from the cycling of the ATPaseMinDbetween a freely
diffusing state in the cytosolic bulk and amembrane-bound state, induced by its activatorMinE under
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continuous consumption of chemical energy byATP-hydrolysis, as shown schematically infigure 1(A). In its
ATP-bound formMinDhomodimerizes and can subsequently attach to the inner bacterialmembrane as ATP-
bound dimers using amembrane targeting sequence in formof a C-terminal amphipathic helix [12–14]. Despite
the fact that the physicochemical details ofMinDmembrane binding are not yet fully understood, it has been
demonstrated thatMinDmembrane binding is a cooperative process [12, 15].When being bound,MinD
diffuses along themembrane. It also recruitsMinEwhich in turn triggers the ATPase activity ofMinD, breaking
the complex apart and releasing all constituents back into the cytosol.MinD then freely diffuses in the bulk and
can, after renewed loading of ATP and dimerization, rebind to themembrane at a new position. This cycling of
MinDbetween two states is the coremechanism forwave propagation of theMin-proteins. For a comprehensive
overview on the underlyingmolecular processes, we refer to recent reviews on this topic [16–21].

One of themost intriguing aspects of theMin-system is the impact of geometry on the spatiotemporal
patterns.While initial experiments inwild-type cells showed characteristic pole-to-pole oscillations, growing
E. coli cells, which roughly double in length before division, can also give rise to stable oscillations in both
daughter cells even before full septum closure [22]. In very long filamentousmutants the pole-to-pole pattern
vanishes and severalMinDE localization zones emerge in a stripe-likemanner (striped oscillations), with a
characteristic distance of 5 μm, strongly reminiscent of standingwaves [3]. No stable oscillation patterns emerge
in spherical cells whereMinDE localization appears to be randomwithout stable oscillation axes [23].

Strikingly, theMin-system can be reconstituted outside the cellular context using purified components on
supported lipid bilayers [24, 25]. Using only fluorescently labeledMinD andMinE andATP as energy source,
traveling surfacewaveswere observed in the formof turning spirals and traveling stripes onflat homogeneous
substrates, whereMinDproteins form amovingwave-front, that is consumed byMinE at the trailing edge,
demonstrating thatMinD andMinE alone are indeed sufficient to induce dynamic patterning [24].
Interestingly, these assays work for different lipid species, demonstrating the robustness of theMin-oscillations
with respect to the detailed values of the binding rates.

Combining this reconstitution approachwithmembrane patterning, it was shown that theMin-system is
capable of orienting its oscillation axis along the longest path in the patch and hence in principle capable of
sensing the surrounding geometry [26].More recently the gap between the traveling in vitroMin-waves and the
standingMin-waves in live cells was closed, usingmicrofabricated PDMS compartmentsmimicking the shape
ofE. coli cells [27]. In these biomimetic compartments, which confine the reaction space in 3D, pole-to-pole
oscillations were observed, reminiscent of the paradigmatic in vivo oscillationmode. Later it was shown that the
Min-oscillations are indeed sufficient to spatially direct FtsZ-polymerization tomidcell, linking two key
elements of bacterial cell division in a synthetic bottom-up approach [28].

In order to study the effect of geometry in the physiological context of the cell, one can place growing cells in
microfabricated chambers of custom shape [29, 30]. This cell sculpting approach allowed the authors to
systematically analyze the adaptation of theMin-oscillations to compartment geometry and demonstrated
experimentally that different oscillation patterns can be stable for the same cell geometry. Using image
processing, it was possible tomeasure the relative frequency of the differentmodes for a large range of interesting
geometries [30]. Figure 1(B) summarizes the different geometries that have been used before in experiments and

Figure 1. (A)Reaction cycle of theMin-system. The full cycle involvesmembrane attachment, cooperative recruitment, diffusion
along themembrane, detachment from themembrane, diffusion and a nucleotide exchange step in the cytosolic bulk. (B)Cross
sections of the three simulation geometries used in this paper. In geometry A only the bottom is coveredwith amembrane. Geometry
B additionally covers the sidewalls and in geometry C the full compartment has covered boundaries.
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that are considered herewith computer simulations.While geometry Auses aflatmembrane patch, similar to
flat patterned substrates [26], geometry B corresponds tomicrofabricated chambers with an open upper side
[27, 28]. Geometry C corresponds to the cell sculpting approach [29, 30].

Like for other pattern-forming systems, the theory of reaction-diffusion processes offers a suitable
framework to address theMin-oscillations from a theoretical point of view [31–34].Many theoreticalmodels
have been proposed to unravel the physical principles behind this intriguing self-organizing protein system and
to explain the origin of its rich spatiotemporal dynamics.While all of them rely on a reaction-diffusion
mechanism similar to the Turingmodel, they differ severely in their details. Thefirst class ofmathematical
models used an effective one-dimensional PDE-approach and relied strongly on phenomenological
nonlinearities in the reaction terms [35–37]. Although all of them successfully gave rise to pole-to-pole
oscillations, they did not allow a clear interpretation of the underlying biomolecular processes andwere not in
agreementwith all experimental observations, such asMinE-ring formation and the dependence of the
oscillation frequency on biological parameters.

The next advance inmodel buildingwas the focus on the decisive role ofMinD aggregation and the relevance
ofMinDbeing present in two states (ADP- andATP-bound) [37, 38]. Very importantly, this highlighted the
interplay between unhindered diffusionwith a nucleotide exchange reaction in the bulk as a delay element for
MinD reattachment [39]. Subsequentmodels shared a common core framework but still differed strongly in the
functional formof the protein binding kinetics and the transport properties ofmembrane-boundmolecules
[40, 41]. Themain difference between themore recentmodels was the dimensionality, ranging fromone-
dimension [35–37, 42] to two [26] and three [39, 43–47].Moreover, themodels can be classified as deterministic
PDE-models [24, 26, 30, 35–39, 47–50] or using stochastic simulation frameworks [22, 43–46, 50–52], and
whether they neglectedmembrane diffusion [35, 36, 39, 43, 48] or not.While somemodels contained higher
than second order nonlinearities in concentrations of the reaction terms [24], it is the prevailing opinion to rely
on atmost second order nonlinearities, allowing for a clear interpretation in terms of bimolecular reactions.
Following the same line of thought, a strong effort wasmade to distill aminimal system that explains the
oscillationmechanismwithout the necessity of spatial templates or prelocalized determinants [48] and
neglecting secondary processes likefilament formation [45, 46, 48].

Themost influentialminimalmodel for theMin-systemhas been suggested byHuang and coworkers [39]. It
has been further simplified by discarding cooperativeMinD recruitment byMinDE complexes on the
membrane [44, 49], allowing a clear view on the coremechanisms: the cycling ofMinDbetween bulk and
membrane, cooperativity ofMinD-recruitment and diffusion in bulk and along themembrane. Using the
minimalmodel, it has been shown that the canalized transfer of proteins fromone polar zone to the other
underlies the robustness of theMin-oscillations [44, 49]. Because the deterministic variants of theminimal
model [39, 49]do not allow us to address the role of stochastic fluctuations, a stochastic and fully three-
dimensional version has been introduced to study the effect of stochastic fluctuations in patterned environments
[52]. For rectangular patterns of 5 μm×10 μm, it was found that the system can be bistable, with transverse
pole-to-pole oscillations along theminor and longitudinal striped oscillations along themajor axis, respectively.
In this early work, it was observed that the stable phase emerged depending on the initial conditions and that
sometimes switching occurred, but the statistics was not sufficiently good to observe switching in quantitative
detail. Indeed suchmultistability has been observed experimentally in sculptured cells over a large range of cell
shapes [30] and the deterministicminimalmodel has been used to explain the relative frequency of the different
oscillations patterns for a given shape using a perturbation scheme [47]. However, as a deterministicmodel, this
approachwas not able to address the rate withwhich one pattern stochastically switches into another.

Here we address this important subject by using particle-based Brownian dynamics computer simulations.
Compared to earlier work along these lines [52], we have developed newmethods to efficiently simulate and
analyze the switching process.Wefind excellent agreementwith experimental data andmeasure for thefirst
time the switching time ofmultistable oscillation patterns.We also use ourmodel to confirm that it contains the
minimal ingredients for the emergence ofMin-oscillations. In addition, we use our stochasticmodel to
investigate the three-dimensional concentration profiles in different geometries and in particular the role of
edges inmembrane-covered compartments.We identify novel oscillation patterns in compartments with
membrane-coveredwalls and find a surprisingly simple (linear) relation between the boundMin-protein
densities and the volume-to-surface ratio, whichmight be relevant for geometry sensing by E. Coli cells.

2.Methods

2.1. Reaction-diffusionmodel andparameter choice
For the particle-based simulation, we use the reaction scheme of theminimalmodel for cooperative attachment
[39, 47, 49, 52]. Themodel uses the following interactions betweenMin-proteins and the inner bacterial
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membrane (schematically shown infigure 1(A)). Freely diffusing cytoplasmic MinDATP can bind to the
membranewith a rate constant sD

s
⟶ ( )aMinD MinD . 1D

ATP bound

MinDATP binds preferably to high density MinDbound regions (cooperativeMinDbinding)
s

+ ⟶ ( )bMinD MinD 2 MinD . 1dD
ATP bound bound

Membrane-boundMinD also recruits cytoplasmicMinE to themembranewith rate sE, creating a
MinDEbound complex

s
+ ⟶ ( )cMinD MinE MinDE . 1E

bound bound

Allmembrane-bound proteins diffuse in the plane of themembrane, butwith amuch smaller diffusion constant
than in the bulk.

MinE attachment activates ATPhydrolysis ofMinD. The hydrolysis of ATP toADPbreaks up the
membrane-bound complex and releases MinDADP andMinE back into the cytoplasmic bulkwith rate constant
soff

s
+⟶ ( )dMinDE MinE MinD . 1bound

off
ADP

Finally MinDADP exchanges ADPby another ATPmolecule (nucleotide exchange)with the rateλ

l⟶ ( )eMinD MinD . 1ADP ATP

This completes the reaction cycle. In table 1we list our parameter values as set A. For comparison, we also list
parameter values used in other studies (set B in [30] and set C in [47, 49]).

2.2. Simulation algorithm
Weuse custom-written code to simulate the stochastic dynamics of theMin-systemwith very good statistics. For
all simulationswe use afixed discrete time step ofD = -t 10 s4 . During every time step each particle isfirst
propagated in space. Thereafter every particle can react according to the previously introducedMin reaction
scheme (1a)–(1e). Themovement of both free andmembrane-bound particles is realized through Brownian
dynamics. Individualmolecules are treated as point-like particles without orientation. Thereforewe can
monitor the propagation separately for eachCartesian coordinate. During a simulation step ofDt the
displacements of the diffusing particles with diffusion constantD are drawn from aGaussian distributionwith
standard deviation s = DD t2x [53] such that

+ D = +( ) ( ) ( )x t t x t X , 2G

p
=

D
-

D

⎛
⎝⎜

⎞
⎠⎟( ) ( )p x

D t

x

D t

1

4
exp

4
, 3X

2

G

where pXG
is the probability distribution ofXG. The same update step is used for the y and z direction. Free

particles in the bulk of the simulated volume undergo three-dimensional diffusionwith reflective boundary
conditions at the borders of the simulation volume. Themembrane-bound particles perform a two-dimensional
diffusion on themembranewith amuch smaller diffusion constant Dbound (compare table 1).Membrane-
bound particles are allowed to diffuse between differentmembrane areas that are in contact with each other.

Table 1.Parameters sets used for simulations of theMin-system. Set A is themain parameter set used
here following [39, 52]. Parameter set B is taken from [30] andC from [47, 49].

Parameter Set A Set B SetC Unit Description (reaction type)

DD 2.5 16 16 μm2 s−1 Bulk diffusion coefficient ofMinD

DE 2.5 10 10 μm2 s−1 Bulk diffusion coefficient ofMinE

Dbound 0.01 0.013 0.013 μm2 s−1 Membrane diffusion coefficient

λ 0.5 1 6 -s 1 First order, unimolecular

sD 0.025 0.075 0.1 μm s−1 First order,membrane attachment

sdD 0.0149 0.054 0.1 μm3 s−1 Second order, bimolecular

sE 0.093 0.254 0.435 μm3 s−1 Second order, bimolecular

soff 0.7 0.33 0.5 -s 1 First order, unimolecular

cD 0.797 0.85 1.0 μM TotalMinD concentration

cE 0.207 0.31 0.5 μM TotalMinE concentration

4 In [30] the unit for these bimolecular reactions is specified as m -m s2 1.
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The different reactions in theMin reaction scheme (1a)–(1e) can be classified into three different types (more
details on the corresponding implementations are given in the supplementary information). Thefirst type
considered here are first order reactions without explicit spatial dependence. The conversion of MinDADP to
MinDATP and the unbinding of the MinDEbound complex from themembrane are of this type. Such reactions are
treated as a simple Poisson process. For a reaction rateκ, the probability to react during a time stepDt is given
by

k= - - Dk ( ) ( )p t1 exp . 4

The second type is also a first order reaction, but with confinement to a reactive area at a border of the
simulated volume. Themembrane attachment of MinDATP proteins is a reaction of this type. For a given
reaction rateσ, we implement these reactions by allowing particles that are closer to themembrane than

m=d 0.02 m to attemptmembrane attachmentwith a Poisson rate k s= d. This results in a reaction
probability of

s
= - - Ds

⎜ ⎟⎛
⎝

⎞
⎠ ( )p

d
t1 exp . 5

The last reaction type is a second order reaction between free andmembrane-bound particles. The
cooperative recruitment of cytosolic MinDATP andMinE tomembrane-boundMinD are reactions of this third
type. In our simulationwe adopt the algorithm implemented in the software package Smoldyn, which has been
used earlier to simulate theMin-system [52]. This algorithm is based on the Smoluchowski framework inwhich
two particles react upon collision [54]. However, the classical treatment by Smoluchowski only considers
diffusion-limited reactions and therefore assumes instantaneous reactions upon collision. In order to takefinite
reaction rates into account, one imposes a radiation boundary condition [55–57]. From the diffusion constant
D, the reaction rateσ and the simulation time stepDt , a reaction radius rσ is calculated [58].Whenever a freely
diffusing particle comeswithin the distance of rσ to amembrane-bound particle, the free particle reacts. For
intermediate values ofDt (such as the time step of -10 s4 that we use for theMin-system) the value of

s Ds ( )r D t, , is obtained numerically [58]. Those numerical values are taken from the Smoldyn software. For
example, for parameter set A the reaction radius for the rate sdD is m=sr 0.0091 m

dD
, and for sE it

is m=sr 0.0179 m
E

.
In our simulationswe use rectangular reaction compartments.We considered three differentmembrane

setups as illustrated infigure 1(B). Tomimic in vitro experiments, where substrates or open compartments are
functionalizedwith amembrane layer [26–28], we place the reactivemembrane at the bottom (geometry A) or at
the sidewalls and the bottomof the simulation compartment (geometry B). To simulate rectangular shaped
E. coli cells, inspired by the cell sculpting approach from [30, 47], fullymembrane-covered volumes are used
(geometry C).We refer to the long side of the lateral extension as themajor or the x-axis, and the smaller side as
minor or y-axis, and accordingly consider the compartment height to extend in the z-direction, aligning the
rectangular geometry perpendicular with the coordinate frame.

In our simulationswe investigate awide range of compartment dimensions. For a simulation boxwith a
length of 10 μm,width of 5 μmandheight of 0.5 μm,we use 6003 MinDATP particles, 6003 MinDADP particles
and 3124MinE particles as initial condition [52]. These particle numbers amount to a totalMinD concentration
of m0.797 M and aMinE concentration of m0.207 M. For other simulation compartment sizes we scale the
particle numbers linear with the volume, since in experiments E. coli bacteria typically have a constantMin-
protein concentration [30].

2.3. Identification of oscillationmodes
In our simulations of theMin-systemdifferent oscillation patterns emerge along themajor orminor axis of the
simulation compartment. In order to analyze the frequency of differentmodes and the stability of the
oscillations in the large amount of simulation data, an oscillationmode recognition algorithm is needed.
Thereforewemonitor theMinDprotein densities at the poles of the different axes over time. To determine the
axis alongwhich the oscillation takes place, we compare the Fourier transformation of the normalized densities
over time (rti

where i denotes the discretized time resolution). If an oscillation takes place, there is a dominant
peak in the Fourier spectrum and the overallmaximal amplitude of the Fourier spectrum is significantly higher
than the one from the non-oscillating axis. The same Fourier spectrum is also used to determine the oscillation
periodT. To differentiate between pole-to-pole oscillations and striped oscillations of a given axis in the system,
we extract the phase difference between the density oscillation at the poles of the cell.

When identifying switching events, one has to be careful because they have to be identified in local time
windows and stochastic fluctuationsmight lead to temporal changes thatmight bemistaken to bemode
switches.We therefore smoothen the data. In detail, we calculate the convolutionCi between the densities over
time and aGaussian timewindowGi
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Here τ is the time between successive densitymeasurements andwe set w = 100 s aswidth of the timewindow.
The current oscillationmode is nowdetermined from the convoluted densitiesCi and assigned to the time ti . In
this way, only switches are identified that persist for a sufficiently long time.

3. Results

3.1.Oscillation patterns in geometry A
First we investigated the oscillations that emerge in geometry Awith parameter set A using a rectangular
simulation volumewith dimensions m m m´ ´10 m 5 m 0.5 m (x y z, , ).With this particular choice thewidth
of the system approximatelymatches the typical length of wild-type E. coli cells and the length of the system
corresponds to the length of a grown E. coli cell which can roughly double in length before septum formation
and division. As shown by the kymographs infigure 2 and in agreementwith the results ofHoffmann and
Schwarz [52], in our simulations two different oscillationmodes occur (compare also supplementalmovie S1).
Note from the color legend that dark and light colors correspond to low and high concentrations, respectively, as
used throughout this work. In the firstmode theMin-proteins oscillate along theminor y-axis fromone pole to
the other (pole-to-pole oscillation). In the secondmode the proteins oscillate along themajor x-axis between the
poles and themiddle of the compartment (striped oscillation). The system stochastically switches between the
twomodes, sometimes via a short oscillation along the diagonal of the compartment. Themode switching
behavior of theMin-system in large volumes is in agreement with the experimental results ofWu et al [30] and
cannot be analyzed completely with conventional PDE-models of theMin-oscillations because they do not
account for the noise in the system leading to the stochastic switch.

Detailed analyses of the pole-to-pole and the striped oscillations from figure 2 are shown infigures 3(A) and
(B), respectively (compare also supplementalmovies S2 and S3, respectively). First, we consider the pole-to-pole
oscillations infigure 3(A). In the kymographs of the boundMinD andMinE proteins (top rowfigures)we see
clusters of bound proteins that detach from themembrane beginning in themiddle and from theremove
towards one of the poles of the compartment in an alternatingway. The shapes of the boundMinDprotein
density clusters in the kymographs have a triangular form, in contrast to the line-like structures of the bound
MinEproteins. Those density lines in the boundMinE kymograph show that theMinE proteins form a high
density cluster in themiddle of the cell which propagates to one of the compartment poles. This behavior is
similar to the experimentally observed ringlike structures ofMinE proteins inE. coli bacteria that travel from the
middle to the poles of the cell, leading to the dissociation ofMinDproteins from themembrane. The

Figure 2.Density kymographs along both themajor andminor axis of the system illustrating stochastic switching between a
longitudinal striped oscillationmode (top) and a transverse pole-to-pole oscillationmode (bottom). Starting from an initially uniform
particle distribution,first a longitudinal striped oscillation emerges along themajor x-axis (top). After 200 s this oscillation stops and a
transverse pole-to-pole oscillation along theminor y-axis begins (bottom). The oscillationmode switches again around 700 s and
1100 s.Herewe use geometry A and the standard parameter set A. Dimensions are m m m´ ´10 m 5 m 0.5 m.
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kymographs of the free particles (middle row infigure 3(A)) are averaged over all heights and have the inverse
shape of the corresponding kymographs of the bound particles (top row infigure 3(A)).Where the density of
bound particles is high, the density of free particles is low and vice versa. During the simulations the spatial
density differences of bothMinD andMinE are higher formembrane-bound particles than for free particles in
the bulk. Therefore in the two bottomkymographs infigure 3(A), which are showing total particle densities, the
pattern ofmembrane-bound particles is dominant.

The kymographs of the striped oscillation infigure 3(B)have the same structure as the ones of the pole-to-
pole oscillations. However, the edges of the boundMin-protein clusters in the kymographs, that indicate the
travelingMin-waves, are curved, in contrast to the straight lines thatwe see for the pole-to-pole oscillations as
shown infigure 3(A). The time-averaged density profiles ofMinDproteins for the pole-to-pole and striped
oscillations are shown infigures 3(C) and (D), respectively. As expected the density of the proteins isminimal
between the oscillation nodes of the emerging standingwave patterns.

It is highly instructive to compare the time evolution of theMinD andMinEprotein densities. Infigure 4(A)
weplot the time evolution of the particle densities of the transverse pole-to-pole oscillation at afixed position

m=y 4.9 m, which is at the edge of theminor axis alongwhich the oscillation takes place. The shape of the
transient density profiles is similar to experimentally observed density profiles of travelingMin-proteinwaves

Figure 3.Detailed analysis of simulation results fromfigure 2. (A)Kymographs of transverse pole-to-pole oscillations. Left column
figures showMinDprotein particle densities and right columnfigures showMinE protein particle densities. The twofigures on the
top showonly particle densities ofmembrane-bound particles. The two figures in themiddle row showparticle densities of free
particles in the bulk of the simulation volume. The bottom twofigures show the total particle densities of both bound and free particles
together. (B)Kymographs of longitudinal striped oscillations. The arrangement is the same as infigure 3(A). (C)Time-averaged
density profile along theminor axis of boundMinDproteins during a pole-to-pole oscillation (inset: time-averaged density profile
along themajor axis). (D)Time-averaged density profile along themajor axis of boundMinDproteins during a striped oscillation
(inset: time-averaged density profile along theminor axis).
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onflatmembrane surfaces [24, 25]. The period of both oscillationsmodes was = ( )T 33.8 0.1 s, which is in
agreementwith the results ofHuang et al [39].

To analyze the influence of the bulk volume on the oscillations, we have alsomonitored how theMinD and
MinEdensities changes at different heights above themembrane. For this we again use geometry A, but now
with a bottom surface of only m m´6 m 3 m, which robustly produces longitudinal pole-to-pole oscillations
along themajor axis. For a compartment height of 4 μmthe volumewas divided in three layers, and for each
layer themean density on one side of themajor axis was plotted over time as shown infigure 4(B).We see that the
largest density changes take place in the layer directly above themembrane, however, the oscillations persist up
to the top layer even for the highest compartment with m=z 4 m. Strikingly, theMinD-density is alwaysmuch
higher than the one ofMinE. Furthermore we reduced the compartment height to 0.2 μm. Interestingly, the
pole-to-pole oscillationswere still present. This implies that the bulk of the simulation volume has only amild
effect on the oscillations in geometry A, despite the fact that there are appreciable density variations in the bulk.

3.2. Essentialmodel elements
Wenext checked that ourmodel indeed includes the essential elements for the emergence ofMin-oscillations.
Because theMinD-switching between bulk andmembrane is clearly indispensible, here we consider the
relevance of diffusion on themembrane and of cooperative recruitment. All simulations in this section are
carried out using geometry A in a m m m´ ´5 m 2.5 m 0.5 m compartment geometry.We chose this geometry
sincewe expect it to give rise to stable longitudinal pole-to-pole oscillations and hence can closelymonitor any
deviations from this default oscillationmode. All other parameters were kept fixed andwe used parameter set A
for this test.

Figure 5(A) shows three kymographs of the system along themajor axis. Switching offmembrane diffusion
entirely (first panel) leads to a loss of stable oscillation patterns. Instead small striped-likeMinD-patches emerge
erratically on themembrane. The second panel infigure 5(A) shows the default diffusion coefficient of
Dbound = 0.01 m -m s2 1where stable pole-to-pole oscillations emerge along themajor axis. By further increasing
themembrane-diffusion-coefficient the pole-to-pole oscillations still robustly emerge but increasingly smear
out. This behavior ismost clearly illustrated by looking at the time-averaged density profiles as shown in
figure 5(C). The inset infigure 5(C) shows that withoutmembrane diffusion, no oscillations emerge at all
(square symbol), while a slow diffusivity as used in parameter set A seems optimal.

In a similar fashionwe analyzed the influence of the cooperativemembrane recruitment ofMinD.
Figure 5(B) shows three kymographs for no cooperative recruitment (s = 0dD ), the default value from
parameter set A and a two-fold increase, respectively.Without cooperativity in this process no oscillations
emerge at all. The second panel shows again the default oscillationmodewhile already a two-fold increase also
leads to unstable behaviorwithout any patterns emerging. This sensitivity with respect to the cooperative
recruitment rate sdD is also summarized infigure 5(D), which illustrates that only in a vary narrow range stable
oscillations emerge. Although a complete parameter scan is out of the question at the current stage for reasons of
computer time, we conclude that stableMin-oscillations emerge only for certain parameter values and that
parameter set A performs verywell in this respect.

Figure 4.Differences betweenMinD andMinE. (A)Density change ofMinD (blue) andMinE (red) in time during a pole-to-pole
oscillation at position m=y 4.9 m using a compartment of m m m´ ´10 m 5 m 0.5 m as in figures 2 and 3. (B)Density change of
non-boundMinD andMinE in time at different heights above themembrane for a m m´6 m 3 m bottom area and m4 m
compartment height.
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3.3. Edge oscillations in geometry B
Aswe have seen in the preceding section, the simulation compartment height has little influence on the
emerging oscillationmodeswhen themembrane only covers the bottom area of the simulation compartment
(geometry A). However, whenwe extend themembrane to cover bottom and sidewalls of the compartment
(geometry B), wefind that the oscillationmodes changewith increasingwall height. First, we consider a
compartment that only exhibits longitudinal pole-to-pole oscillations along themajor axis (wall height of
0.5 μmand bottom area of m m´5 m 2.5 m). In contrast to the flatmembrane geometry A, here theMinD
protein density decreases in the vicinity of themembrane edges between the sidewalls and the bottom area, as
shown infigure 6. This is due to the decreased volume permembrane area ratio in the vicinity of themembrane

Figure 5. (A)Density kymographs along themajor axis for =D 0bound m -m s2 1, =D 0.01bound m -m s2 1 and =D 0.05bound

m -m s2 1, respectively. (B)Density kymographs along themajor axis for s = 0dD , s m= -0.0149 m sdD
3 1 and s m= -0.0298 m sdD

3 1.
(C)Time-averaged density profiles for differentmembrane diffusion-coefficients Dbound. (D)Time-averaged density profiles for
different cooperativeMinDmembrane-recruitment rates sdD.
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corners, leading to a decreased density of boundMinDproteins in these regions. This effect is clearly visible by
comparing the time-averaged density profile infigure 6with the one shown in 3(C).

The full oscillation pattern is shown in 7(A) for the lowest height value (black label) and resembles a pole-to-
pole oscillation for geometry A, but nowbetween the two opposingwalls along themajor axis. Nowwe increase
thewall height in increments of 0.5 μm.The oscillation changes at awall height of m3.5 m to a newoscillation
mode (green label, compare also supplementalmovie S4). There the proteins start to oscillate between the
middle of the bottom area and the upper edges of thewalls. This newly identified edge oscillationwith one polar
zone at the bottom and one top polar zone at each of the four sidewalls persists until thewall height reaches
9.5 μm.Thereafter the oscillationmode changes to a striped edge oscillation along thewalls (yellow label).

Infigure 7(B)we show results for a simulation volume that gives rise to striped oscillations along themajor
axis (bottom area of the length of 9 μmandwidth of 4 μm). At awall height of m=z 0.5 m the simulation gives
rise to longitudinal striped oscillations along themajor axis or transverse pole-to-pole oscillations along the
minor axis. This is the same kind of bistability that we already observed in geometry A using a compartment of

m m m´ ´10 m 5 m 0.5 m. After increasing thewall height to m=z 1.5 m the pole-to-pole oscillations along
theminor axis disappear and only striped oscillations along themajor axis are observed. At thewall height of

m=z 3.5 m the oscillationmode changes to a large pole-to-pole oscillation along theminor axis and no edge or
striped oscillations were observed. Figures 7(C) and (D) show the kymographs for themembrane-bound
proteins corresponding tofigures 7(A) and (B), respectively. These results demonstrate that in geometry B, both
themode selection and the detailed shape of the polar regions can be controlled by compartment height.

For an edge oscillation the freeMinDprotein densities in the bulk of the compartment along one of the
bottom area axis (y-axis) and along thewalls (z-axis) are shown infigure 8(A).We see that spatial oscillations in
the bulk only take place along the z-axis. On the y-axis kymograph (figure 8(A) top kymograph) the change of the
density only takes place along the temporal axis. This corresponds to the change of total numbers of free and
boundMinDproteins during the oscillation and no spatial oscillation takes place along the y-axis. On the z-axis
kymograph (figure 8(A) bottomkymograph)we observe a spatial pole-to-pole oscillation. Infigure 8(B)we
show the densities of the freeMinDproteins in the bulk of the compartment during the large pole-to-pole
oscillation for m=z 4 m.We see that the bulk proteins oscillate only along one axis (here the y-axis) and no
spatial oscillations occur along thewalls (z-axis).

Fromour study of geometry B,we conclude that in non-flatmembrane geometries the oscillations of the
Min-proteins do not only take place along themembrane, but are rather defined by the canalized transfer of the
proteins through the bulk. This shows the importance of three-dimensional simulations for non-flatmembrane
geometries in order to determine the self-organized oscillationmodes.

3.4. Geometrical determinants of boundparticle densities
Wehave alsomonitored the amount ofmembrane-boundMinD andMinE proteins and compared it to the total
amount of proteins in the system. Interestingly, we observed that these two quantities have a linear dependence

µN Nbound total as shown in figure 9(A). Surprisingly, this relation seems to hold for all geometries and
dimensions, as indicated infigure 9(A) by the different symbols. Since in our simulationswe keep density
constant, the total amount of proteins scales linearly with the compartment volume ( µN Vtotal ). Overall, we
conclude the following relation for themean boundMin-protein density

Figure 6.Average density profile of boundMinDproteins in a simulationwhere the reactivemembrane is extended to the sidewalls of
the compartment (geometry B). The figure shows the density profile on the bottom area of the compartment (  m mx0 m 5 m).
Below m=x 0 m and above m=x 5 m the projected density profile along the sidewalls of the compartment is shown.
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r = µ µ¯ ( )N

A

N

A

V

A
, 7bound

bound total

whereA denotes the total reactivemembrane area. Thus themean boundMin-protein density increases linearly
with the volume-to-area ratio, as verified by figure 9(B). Strikingly, we again observe a dramatic difference
betweenMinD andMinE. Although this scaling is the same for both,MinE ismuch closer to being completely
bound (gray lines), indicating that once a stable oscillation emerges,MinE is almost completely depleted from
the bulk.

We next assessed the physiological relevance of these observations. In order to investigate how the volume-
to-area ratioV/A changes during cell growth, we approximate the shape of an E. coli bacteriumby a
spherocylinder of length L andwidthW and evaluateV/A analytically. Since E. coli bacteriamainly grow in
length and stay constant in width [59], we show the evolution ofV/A as function of the cell length L for various
fixed cell widths infigure 10(A). One clearly sees thatV/A remains nearly constant as a function of the cell length
L. Recalling that our previous observation stated that themeanmembrane-boundMin-protein densities r̄bound

Figure 7.Different edge oscillationmodes in geometry B in dependence of the wall height z depicted as time-averaged density plots.
(A)The bottom area has dimensions of m=x 5 m and m=y 2.5 m. Pole-to-pole oscillations are labeled in black, edge oscillations in
green and the striped-edge oscillations in yellow. (B)The bottom area has dimensions of m=x 9 m and m=y 4 m. Striped
oscillations are labeled in dark blue and pole-to-pole oscillations in light blue. In bothA andB the density profiles show time-
integrated surface-densities. (C) and (D)The corresponding kymographs show the densities of the boundMinD andMinE particles
along the bottom area and thewalls over time.

11

New J. Phys. 18 (2016) 093049 AAmiranashvili et al



Figure 8.Density kymographs of freeMinDparticles in geometry B in the bulk of the compartments along different axes over time.
(A)Edge oscillation (part of the green phase infigure 7(A)). (B)Pole-to-pole oscillation (part of the light blue phase infigure 7(B)).

Figure 9. (A)Relation between the amount of total andmembrane-boundMinDparticles taken frommany different independent
simulations. The inset shows the same relation for boundMinE particles. Note thatMinE ismore strongly depleted from the bulk than
MinD (gray lines indicate complete depletion). (B)Mean density ofmembrane-bound particles as a function of theV/A ratios of the
compartment geometry.

Figure 10. (A)Volume-to-area ratioV/A of a spherocylinder as a function of the cell length L for various cell widthsW. (B)A similar
relation is observed for an ellipsoidal shape.
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scale linearly withV/A, this would suggest that living bacteria grow in a fashion that keeps bothV/A and thus
consequently r̄bound constant, whichmight be advantageous for the stability and robustness of theMin-
oscillations and related processes, such as formation of the FtsZ-ring. A similar qualitative behavior is observed if
we instead of a spherocylinder would assume an ellipsoidal shape as is shown infigure 10(B).

3.5.Oscillationmode switching
Abovewe have seen thatmultistability is a recurrent phenomenon in theMin-system, both in geometries A and
B.We next turn to a systematic investigation of the stochastic switching between twodifferent oscillationmodes.
An oscillationmode transition of this type occurs frequently in a m m m´ ´8 m 2 m 0.5 m compartment using
geometry B. In this geometry theMin-system gives rise to both pole-to-pole and striped oscillations along the
same (major) axis (kymograph infigure 11(A)).Wemeasure the lifetimes (oscillation duration before amode
switch occurs) of the twomodes during a 50 000 s long simulation trajectory. The resulting histograms of the
lifetimes are shown infigure 12.We can approximate themode switching as a Poisson process by assuming that
the switching probability p(t) obeys µ -( ) ( )p t ktexp . Fitting an exponential to the switching times histograms
we obtain the switching rates of these processes. Herewe neglect themeasurements of short lifetimes below
t = 100 sc since our oscillationmode detection algorithm canmiss amode transition if its lifetime is shorter.
The switching rate for the pole-to-pole oscillation is = -k 0.004 22 sp

1 and for the striped oscillationwe find
= -k 0.004 06 ss

1, thus the twomodes seem to be equally frequent in this case.
We have also performed the same analysis with identical compartment geometry for the two other

parameter sets (set B andC) as presented in table 1. Parameter set B gives rise to stable longitudinal pole-to-pole
oscillations along themajor axis (kymograph infigure 11(B)) in agreementwith the results from [30], while
parameter set C shows a qualitatively similar switching behavior as parameter set A (data not shown)with
frequentmode transitions.

Figure 11. Stochastic oscillationmode switching in geometry B along the same axis. (A) shows the density kymograph of a simulation
run using parameter set Awhere transitions between longitudinal pole-to-pole and longitudinal striped oscillations occur in a
compartment of dimensions m m m´ ´8 m 2 m 0.5 m. (B) shows a density kymograph using the same compartment geometry but
parameter set B instead.

Figure 12.Histograms of oscillationmode lifetimes before amode switch occurs. (A) Striped oscillations. (B)Pole-to-pole
oscillations.
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To analyze the effect of theMin-protein concentration on the oscillationmode switching, we have
performed the same simulationwith increasedMin-protein particle densities using again parameter set A. The
resulting fractions of the two oscillationmodes during the 50 000 s simulation trajectory are shown infigure 13,
and their corresponding switching rates kp and ks are given in table 2.We note that the fraction of striped
oscillations increasesmonotonously with increasing particle density. In agreement with this, the rate ks
decreases with increasing particle density. In contrast, the rate kp does not show a systematic change and seems to
fluctuate strongly. The shift to the striped oscillations suggests that theMin-oscillations can be used not only to
sense geometry, but also to sense concentrations.

3.6. Phase diagrams for geometryC
Wu et al have experimentallymeasured the fractions of different oscillationmodes ofMin-proteins in
rectangular cell geometries ofE. coli bacteria of various sizes with constant height [30]. In order to address these
observations, we now turn to geometry C, which is a rectangular and fullymembrane-covered compartment as
sketched infigure 1(B). Throughout this sectionwe keep the compartment height fixed at m=z 1 m, while we
vary the length (major axis) between 2 and m10 m and thewidth (minor axis) of the compartment between 1 and
m5 m in steps of m1 m, respectively. To determine the oscillationmode fractions we calculate an ensemble

average of the oscillationmodes after 500 s simulation time. For each compartment size a sample of 20
independent simulations is used.

In the following analysis we only focus on the threemain oscillationmodes, which here are longitudinal
pole-to-pole and striped oscillation (along themajor axis) and transverse pole-to-pole oscillation (along the
minor axis). Other oscillationmodes as they have been reported in [30]were also observed using our framework,
however, due to their low probability, amuch higher sample size would be necessary to analyze their occurrence
frequencywith sufficient statistics. The results for the three oscillationmodes are shown infigures 14(A)–(C). In
general, each of the three oscillationmodes dominates in one region of the phase diagram, but the transitions are
fuzzy and therefore bistabilities occur. For compartments with length below m7 m andwidth below m4 m, only
pole-to-pole oscillations are observed.Most of those oscillations occur along themajor axis of the system. The
transverse pole-to-pole oscillations along the y-axis emergemost frequently in compartments with quadratic
bottom area. Increasing thewidth further increases the fractions of transverse pole-to-pole oscillations at the
expense of longitudinal pole-to-pole oscillations. Increasing the length for afixedwidth shows a sharp transition
from longitudinal pole-to-pole to longitudinal striped patterns at around 6 μm. For compartments with length
larger than m7 m, the longitudinal pole-to-pole oscillations vanish almost entirely. In the region of both large
long sides (around 7–10 μm in length) and large short sides (around 4–5 μm inwidth), the oscillationmode
fractions are rather equally shared between longitudinal striped and transverse pole-to-pole oscillations, which
is also in linewith the bistability that we observed between these two patterns in the m m m´ ´10 m 5 m 0.5 m
compartment of geometry A as shown in section 3.1. Figure 14(D) summarizes thesefindings in a phase diagram
that considers only the dominatingmode (expect in the regions of clear bistability). Overall wefind the

Figure 13. Fractions of pole-to-pole and striped oscillationmodes in dependence of the amount of particles present in the simulation
volume (geometry B, parameter set A).

Table 2. Switching rates for different protein con-
centrations (geometry B, parameter set A).

n-fold particle number kp (s
−1) ks (s

−1)

1 0.0042 0.0041

1.33 0.0065 0.0024

1.67 0.0055 0.0016

2 0.0066 0.0008
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determined oscillationmode fractions based on parameter set A and as shown infigure 14 to be in excellent
agreementwith the experimental results as reported byWu et al [30].

4. Conclusion

Using a stochastic particle-based simulation framework, we have investigated the stochastic switching between
multistable oscillationmodes of theMin-system in different three-dimensional compartment geometries.
Although it is well known that geometrical constraints have a strong impact on the dynamic oscillations of the
Min-proteins,multistability andmode switching have only recently been investigated inmore detail [47, 52].
Our stochastic framework provides a suitable approach to address the question of oscillationmode selection and
stability, since it naturally incorporates fluctuations due tofinite copy numbers in the system. This allowed us to
address the influence of the three-dimensional shape of the compartment and the boundary conditions, with a
closematch to existing experimental assays (flat supported bilayers [24, 26], functionalized compartments
[27, 28], and cell sculpting [30, 47]). For example, we addressed the role of compartment height and
demonstrated the emergence of newoscillationmodes with increasing height, underlining the importance of an
explicit three-dimensional representation of the system.We also showed that diffusion long themembrane and
cooperative recruitment are essential elements for the emergence ofMin-oscillations. In general, particle-based
stochastic computer simulations are a great tool for explorative research and in the future could be used to
exploremore details of the different scenarios that have been suggested for themolecularmechanisms shaping
theMin-oscillations [42, 50].

Our simulations demonstrated several features thatmight be related to the physiological function of the
Min-system inE. coli. First we observe that there is a dominating length scale of m5 m, which happens to be the
natural length of an interphaseE. coli cell. Secondwe found a linear relation between the density ofmembrane-
boundMin-proteins and the volume-to-surface ratio, which tends to be constant during growth ofE. coli. Third
we observed that the relative frequency of competing oscillationmodes depends on concentration, suggesting
that theMin-oscillations can be used not only to sense geometry, but also concentration. Fourth, we found that

Figure 14.Relative importance of the threemain oscillationmodes in geometry C of varying dimensions. (A) shows the fractions of
longitudinal pole-to-pole oscillations along the x-axis, (B) the fractions of longitudinal striped oscillations along the x-axis, and (C)
transverse pole-to-pole oscillations along the y-axis. (D)Phase diagramof dominant oscillationmodes.When twomodes emerged
bothwith a frequency>40%, we considered bothmodes as dominant, as indicated by the striped regions in the diagram.
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stable oscillations strongly depleteMinE from the bulk. For the future, it would be interesting to study possible
feedback between protein production andMin-oscillations.

For our simulations, wemainly used the established parameter set A from table 1 and achieved excellent
agreementwith experimental results regarding the relative frequency of the threemain oscillationmodes in
different cell geometries [30]. Again the critical length scale around 5 μmplays an important role in transitions
between different regimes, which then are the regions of high bistability. However, we also note that different
parameter choices lead to different outcomes and that it would be interesting to perform an exhaustive
exploration of parameter space to better understand how robustness andmultistability depends on kinetic rates,
diffusion constants and concentrations. In the future, such a complete scanmight become possible by using
GPU-code rather than theCPU-code developed here.

Most importantly, however, our stochastic approach allowed us tomeasure for thefirst time the switching
rates between different competing oscillation patterns of theMin-system. This was done for parameter set A
from table 1. Interestingly, parameter set C gave similar results in this respect, while parameter set B results in
very stable oscillations without switching, in agreement with the experimental observations for the cell sculpting
experiments [30]. In the future, it would be interesting to investigatemore systematically how the effective
barriers between two competing oscillation patterns depend onmodel parameters and compartment geometry.
In general, theMin-system is an excellentmodel system to study not only geometry sensing, but also the role of
spatiotemporalfluctuations inmolecular systems.
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