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Abstract. Amphiphiles are molecules which have both hydrophilic and hydrophobic parts. In
water- and/or oil-like solvent, they self-assemble into extended sheet-like structures due to the
hydrophobic effect. The free energy of an amphiphilic system can be written as a functional of
its interfacial geometry, and phase diagrams can be calculated by comparing the free energies
following from different geometries. Here we focus on bicontinuous structures, where one highly
convoluted interface spans the whole sample and thereby divides it into two separate labyrinths.
The main models for surfaces of this class are triply periodic minimal surfaces, their constant
mean curvature and parallel surface companions, and random surfaces. We discuss the geome-
trical properties of each of these types of surfaces and how they translate into the experimentally
observed phase behavior of amphiphilic systems.

1 Surfaces in Self-assembling Amphiphilic Systems

The subject of this article is the theoretical description of amphiphilic systems, which are
one example o$oft condensed matteBoft matter is material that has a typical energy
scale ofkgT ~ 4 x 10~21J, wherekp is the Boltzmann constant affdl ~ 300K is

room temperature. For such material, perturbations arising from the thermally activated
movement of its molecular components are sufficient to induce configurational changes,
and entropy is at least equally important as energy in determining its material properties.
The understanding of the underlying mechanisms is essential for the application of many
technologies in everyday life, including colloidal dispersions (paints, inks, food, creams,
lotions), foams (beverages), liquid crystals (displays), polyelectrolyte gels (diapers) and
soaps (washing and cleaning). Moreover, the teaft matteralso includes most bio-
materials, for example blood or cartilage. One particularly important biomaterial is the
biomembrangthat is the protein carrying lipid bilayer which surrounds each cell and
its organelles. A good model system for the structural properties of biomembranes are
lipid bilayers which form spontaneously in mixtures of water and lipids and which are
one of the main subjects of this paper.

Soft matter systems are very often characterized by competing interactions (including
entropic ones), which lead to structure formation on the length scale between tens and
hundreds of nanometers (1 nmi&—2 m). Since this length scale is not accessible by
optical lithography, self-assembly in soft matter systems is one of the main concepts of
nanoscience. With structure formation being so prominent in soft matter systems, their
theoretical description often centers around their spatial structure in three dimensions.
For a rough classification of the different approaches used, it is convenient to use an
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analogy to the field of random geometries, and to distinguish between point, fiber and
surface processes. Examples of systems which are suited for approaches along these lines
are colloidal dispersions, polymer networks and sheet-like structures in self-assembling
amphiphilic systems, respectively. Here we will treat the latter case, but we will also
show that surface dominated system can be related to Gibbs distributions for scalar fields,
namely through the use of isosurface constructions.
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Fig. 1. Schematic representation of different amphiphilic molecules. Hydrophobic tails
are to the left, hydrophilic heads to the right. (a) Pentaethylene glycol dodecyl ether,
C12H25(OCH2CH>2)sOH or in short Ci2Es, is a small surfactant. (b) Lauric acid,
CH3(CH2)10COOH or in short LA. Fatty acids are the simplest amphiphiles and can be de-
solved to high amounts in phospholipid bilayers. (c) Dilauroyl phosphatidylcholine, or in short
DLPC. Phosphatidylcholines have two hydrocarbon tails and a zwitterionic headgroup. They are
abundant in animal cells and the best studied model system for biological lipids. (d) Monoolein,
a monoacy! glycerol with one (unsaturated) hydrocarbon tail.

Amphiphilic systemare solutions of amphiphiles in suitable solvelmphiphiles
are molecules which consist of two parts, one being hydrophilic (water-like, called
the head) and one being hydrophobic (oil-like, called the tail). Well known classes
of amphiphiles argensideqused for washing and cleaning purposes) kpids (the
basic components of biomembranes). Figure fig:amphiphiles shows several examples for
which phase diagrams are discussed below. Tensides are oftenstafiectantsdue to
their surbce_advity at interfaces between water-like and oil-like phases. Hydrophilic
and hydrophobic molecules demix due to the hydrophobic effect: oil-like molecules
are expelled from a region of water-like molecules since they disturb their network of
hydrogen bonds. Hydrophilic and hydrophobic parts of an amphiphilic molecule cannot



Bicontinuous Surfaces in Self-assembling Amphiphilic Systems 109

demix due to the covalent linkage between them, but the amphiphiles can self-assemble
in such a way as to shield its hydrophilic parts from its hydrophobic ones and vice
versa. Amphiphilic systems have many similarities with diblock copolymer systems,
for which the termmicrophase separatiois used to denote the molecular tendency for
structure formation (see the contribution by Robert Magerle). However, in contrast to
diblock copolymers, amphiphiles are small molecules, thus the entropy of their molecular
configurations plays only a minor role in determining the overall structure. Moreover,
whereas in diblock copolymer systems one component is sufficient to obtain stable
mesophases, in amphiphilic systems usually the presence of an aequeous solvent is
necessary to obtain well-pronounced structure formation. Both diblock copolymer and
amphiphilic systems show structure formation on the nanometer scale, but the length
scale is set by different control parameters: for diblock copolymers and amphiphiles,
these are polymer size and solvent concentrations, respectively. Since the solvent in an
amphiphilic system usually has no special physical properties by itself, its properties are
mostly determined by its interfaces. This stands in marked contrast to the case of diblock
copolymer systems, where the entropy of chain configurations in the regions away from
the interfaces cannot be neglected in a physical description (for a review see [71] and
references therein). As we will discuss in more detail below, interface descriptions have
been very successful in describing the properties of amphiphilic systems (for reviews
seel[63, 40, 64, 104, 92]).

Amphiphilic systems can be classified according to the solvent used. A mixture of
water and amphiphile is called@narysystem, and a mixture of water, oil and amphiphile
is called aernarysystem. In binary systems, amphiphiles self-assemble into spherical,
cylindrical or bilayer structure in such a way that the hydrophobic tails are shielded from
the hydrophilic solvent; in ternary systems, amphiphiles self-assemble into monolayer
structures in such a way that the hydrophobic tails and the hydrophilic heads face the
hydrophobic and hydrophilic solvents, respectively (see[Big. 2). Irrespective of these
differences, amphiphiles in binary and ternary systems assemble into similar geometries,
because in both cases one deals with extended sheet-like structures (the same geometries
also occur in diblock copolymer systems). At room temperature, amphiphiles in mono-
and bilayers usually form a two-dimensional fluid, that is the molecular constituents
show only short-ranged and no long-ranged order in the plane of the interface. Therefore
the sheet-like structures in amphiphilic systems are cdllédd membranegin fact
membrane fluidity is essential for the functioning of the protein machinery carried by
biomembranes).

Since the physics of amphiphilic systems is mostly determined by their interfaces,
different geometries have comparable free energies and small changes in external vari-
ables can induce phase transitions. In particularly, for amphiphilic systems different
geometries are stable for different values of concentrations and temperature. In order
to achieve systematic control of amphiphilic systems, a large effort has been invested
into experimentally determining the phase diagram for many important amphiphilic sys-
tems. It has been found that despite their molecular diversity, the phase behavior of am-
phiphilic systems follows some general rules which result from their intrinsic tendency
for self-assembly into sheet-like structures. For example, for increasing amphiphile con-
centration one usually finds the generic phase sequence micellar disordered - micellar
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Fig. 2. Self-assembly of amphiphiles: (a) in binary systems, amphiphiles self-assemble into bilay-
ers, micelles and vesicles in order to shield the hydrophobic tails from the aequeous solvent. (b) In
ternary systems, the oil-like solvent swells the hydrophobic regions. If the oil-like solvent is the
majority component, inverse structures occur. In ternary systems, all interfaces are amphiphilic
monolayers.

ordered - hexagonal - cubic bicontinuous - lameNéicellar means spherical geometry;
micellar orderedcorresponds to an ordered (usually cubic) array of spherical micelles.
Hexagonaldenotes a two-dimensional packing of cylindrical aggreg&&antinuous
means that one surface partitions space into two separate labyrinths, each of which can
be used to traverse spa€aibic bicontinuousorresponds to a space-filling arrangement

of one interface, which folds onto itself in a cubic arrangement. Sometimes non-cubic
spacegroups are found, but most ordered bicontinuous structures in equilibrium are cu-
bic. In some systems, bicontinuous yet disordered phases occur, which arspalige
phasesandmicroemulsiongor binary and ternary systems, respectivelymellar cor-
responds to a one-dimensional stack of interfaces. Ordered arrangements like hexagonal
or cubic symmetries can be probed by scattering techniques, and bicontinuity by diffu-
sion experiments (e.g. using nuclear magnetic resonance). Figure fig:geometries tries to
visualize the different interface geometries. It is the case of cubic bicontinuous phases
which is the main focus of this paper.
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Fig. 3. Geometries of self-assembled interfaces: (a) micellar (spheres), (b) hexagonal (cylinders),
(c) lamellar (planes), (d) cubic bicontinuous (cubic minimal surfaces) and (e) disordered bicon-
tinuous (random surfaces). In amphiphilic systems, mono- or bilayers are draped onto the math-
ematical surfaceBicontinuousmeans that there is one surface which spans the whole sample,
thereby separating it into two disjunct yet intertwined labyrinths (like the corresponding surface,
each labyrinth is connected and spans the whole sample). Note that except for (e), all surfaces are
ordered and have constant mean curvature.

There exists a large body of literature on the occurence of bicontinuous phases in
amphiphilic systems (for reviews seée [27) 68,1103]). In Elg. 4 we show experimental
phase diagrams for binary [[72, 108] and ternary [59, 76] systems with the small surfac-
tant C12 Es (this is the molecule shown in Figl 1a). For the binary system[Fig. 4a, at
low temperature one sees the sequence hexadgbnatubic bicontinuoud’; - lamel-
lar L., with increasing amphiphile concentration. For high temperature, the hexagonal
and cubic bicontinuous phases disappear, the lamellar ghasgpands (its interfaces
unbind), and for very small amphiphile concentration a sponge phasecurs. For
the ternary system, Fifll 4b, we recognize the same situation again close to the binary
side water-amphiphile. For equal amounts of water and oil and not too large concen-
tration of amphiphile, that is in the lower middle of the Gibbs triangle, one sees the
following phase behavior: at low temperature an emulsification failure occurs, that is the
micellar disordered phask; coexists with an oily excess phase. At high temperature,
the emulsification failure disappears and is replaced by a microemulsion (the central,
triangular one phase region). We can conclude that at low temperature, strongly curved
structures prevail{,, L), while at high temperature, those structures become stable
which are locally flat L., L3, microemulsion). As we will show below, this behavior
can be understood using the concept of a temperature dependent spontaneous curvature:
spontaneous curvature is finite at low temperature, but vanishes at high temperature. The
concept of finite spontaneous curvature also offers a natural explanation for the emul-
sification failure at low temperature. As we will argue below, the cubic bicontinuous
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phaseV; is an intermediate structure between strongly curved and locally flat. It also
follows from the phase behavior described that at low temperature, stable phases tend
to be ordered#, V1), while disordered phases profit from increased temperafuye (
microemulsion). We will discuss below that the disordered phases indeed have a larger
configurational entropy. In this respect, it is the lamellar phisewvhich acts as an
intermediate structure.

In Fig.[§ we show experimental phase diagrams for two different lipid-water mix-
tures. Figure fig:phasebehavior2ais for water and 2:1 lauric acid / dilauroyl phosphatidyl-
choline [110] and Fid.J5b for water and monooléin|[88] (these are the molecules shown in
Fig.[db-d). Despite the molecular differences, the macroscopic phase behavior is surpris-
ingly similar. At low temperature the membranes loose their fluidity. At intermediate
temperatures, the lamellar phase is stable, and at high temperatures, it is replaced by
the hexagonal phase. Whereas in the case of the surfactaht spontaneous curva-
ture is finite at ambient temperatures and vanishes at high temperature, for the lipids
spontaneous curvature vanishes at ambient temperatures and increases with tempera-
ture. Several cubic bicontinuous phases are stable for intermediate temperatures, in the
sequence lamelta G - D - P(here G, D and P stand for cubic bicontinuous structures
which are discussed in more detail below) with increasing water content. The last phase
in this sequence undergos an emulsification failure, that is it coexists with an excess
water phase. We will show below that this phase behavior can be explained nicely if the
lipid monolayers of the cubic bicontinuous phases are modeled as parallel surfaces to a
cubic minimal midsurface.

In this article, we focus on the interface description of amphiphilic systems, that is
the free energy of the system is written as a functional of its interface configuration.
The interface free energy is introduced in the next section (Bect. 2), and in the rest of
this article we will specify this free energy expression for different instances of cubic
bicontinuous phases. In each case, we will discuss the relevant geometric properties
and show how they relate to the resulting free energy expressions and phase diagrams.
Our starting point arériply periodic minimal surface§TPMS) in Sect[13, a subject
well-known from differential geometry. These structures are expected to occur if the
amphiphilic interface is symmetric in regard to its two sides and if temperature is not too
high as to destroy the ordered state. TPMS are also the reference state for their parallel
surfaces and CMC-companions, which are the adequate structural models for a detailed
analysis of amphiphilic monolayers in cubic bicontinuous phases. In the case that the
physical interface is not symmetric in regard to its two sides (that is if spontaneous
curvature exists, like usually for an amphiphilic monolayer at a water-oil interface), the
relevant mathematical representations are the constant mean curvature companions of
the TPMS, that igriply periodic surfaces of constant mean curvat(@MVC-surfaces)
treated in Seck]5. The case of lipid bilayers might be considered to be the composition
of two such CMC-surfaces, but we will argue in Sédt. 4 that in this case the relevant
geometry is in fact the one glrallel surfacedo a TPMS. In all of these cases, we are
interested in ordered structures, and therefore the main method will be minimization of
the corresponding free energy functionals. This is different in $é&ct. 6, where we will
discuss disordered bicontinuous phases, that is the sponge phases and microemulsions,
which often occur at higher temperatures due to entropic effects. These structures are
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Fig. 4. Experimentally determined phase behavior for the surfaafintFs: binary system
(H20/C12E5) [108] (top) and ternary systenid0/C12Es/C14) [76] (bottom). In the binary
system, the hexagonal phagk, the cubic bicontinuous phadé, the lamellar phasé ., the
sponge phasés and the micellar phasds, and L, are stable. In the ternary system, the same
phases occur close to the binary side0/C12E5. At Ty = 5°T andT> = 25°T, L coexists
with excess oil (emulsification failure). At; = 48°T (balanced temperature), a bicontinuous
microemulsion is stable in the middle of the Gibbs triangle.



114 Ulrich Schwarz and Gerhard Gompper

e

20 ) 1 e e e i B S o e
o 0.1 02 03 04 05 06 07
0
w
120
& | Fl + water
EI N - ” H‘..". ey
I '\f'? P3m| i
~ 80 | S— S i p—
Sj/ \ Pn3m + water
D) _la3d ‘ i
=
z
£
5] el i B
E" 40 - L&
3] i \ = Lo+ la3d
L+ Pn3m
L+ water
et .
Le * Lo+ ice |
o |
0 10 20 30 40 50

Composition, % (w/w) water

Fig. 5. Experimentally determined phase behavior for lipid-water mixtures: 2:1 lauric acid /
dilauroyl phosphatidylcholiné [121.0] (top) and monool€inl[88] (bottom). In both phase diagrams,
one sees the sequence lamellar - cubic bicontinuous - excess water (emulsification failure) at
intermediate temperatures (arowf@ C) and with increasing water concentration. In (a), G, D
and P are stable. In (b), G (Ia3d) and D (Pn3m) are stable.

modeled asandom surfaceshus the main model here will be Gibbs distributions, in
particular the theory of Gaussian random fields and Monte Carlo simulations.

2 Free Energy Functionals

2.1 Interface Models

From the viewpoint of elasticity theory, amphiphilic interfaces with small curvatures can
be considered to be thin elastic shells, which are known to have few fundamental modes
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of deformation: out-of-plane bending, in-plane compression and in-plane sheéaring [60].
However, since amphiphilicinterfaces are fluid and nearly incompressible, in-plane strain
is irrelevant and the most relevant deformation mode is bending. For small curvatures
the free energy of an amphiphilic interface is a function only of its geomleltry [8, 47]:

F= /dA{o+2n(H—co)2 +RK} . @)

Hered A denotes the differential area element @hénd K’ mean and Gaussian curva-
ture, respectively. The latter two follow from the two principal curvatureandks as

H = (k1 +k2)/2andK = ki ko. The three material parameters introducedln (1) define
the energy scales of the corresponding changéssurface tensioand corresponds to
changes in surface areais bending rigidityand corresponds to cylindrical bending, and

k is saddle-splay modulu®r Gaussian bending rigidifyand corresponds to changes in
topology due to the Gauss-Bonnet-theorem for closed surface$x = 27y, wherey
denotes Euler characteristic. Teigontaneous curvatudefines the reference point for
bending deformations. It has to vanish for symmetric amphiphilic sheets (like lipid bilay-
ers), but in general is finite for non-symmetric ones (like monolayers). For monolayers,
it is usually a linear function of temperaturg, ~ (T' — T3). Therefore spontaneous
curvature vanishes at the balanced temperafirat which solvent properties make the
monolayer symmetric in regard to bending.

For amphiphilic interfaces, surface area is proportional to the number of amphiphilic
molecules, thus can also be interpreted as a chemical potential for amphiphiles. The
bending rigidityx has to be positive, otherwise the system would become instable to
spontaneous convolutions. For surfactant and lipid systems, its values are of the order
of 1 and 20kg T, respectively. Surface tensiencan assume negative values (favorable
chemical potential for the influx of amphiphiles), as long as bending rigidityists and
has a positive value, in order to prevent an instability towards proliferation of interfacial
area. The value of the saddle-splay modulis often debated, but usually it is assumed
to have a small negative value. This assumption is validated by the following argument
[48]: for o = 0 andcy = 0, we can rewrite[(ll) as

1 1
F— /dA{2n+(k1+k2)2+2n_(k1k2)2} (2)
with _ _
K K
H+—H+§a h-=75" ®)

From this we conclude that the Gaussian bending rigidity has to satisfy 0 and
k_ > 0, thatis—2x < k& < 0, otherwise the system would become unstable. For
k< —2k (kg < 0), we would getk; = ko — oo, that is many small droplets, and for
k> 0 (k- < 0), we would getk; = —ky — oo, that is a minimal surface with very
small lattice constant.

From the mathematical point of view, it is interesting thatdo= 0 andcy, = 0,
the bending energy frond](1) is not only invariant under rescaling with length, but also
invariant under conformal transformations in general. This has intriguing consequences
for vesicles[[104] (vesicles are depicted in Hifj. 2, but are not subject of this article)
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and phase transitions in systems without spontaneous curvature (as will be discussed in
Sect[®).

Since the energy scales involved are of the ordépdf, thermal noise is sufficient to
induce shape changes. Due to thermal fluctuations on smaller length scales, the effective
values for the material parameters are changed (renormalized) at larger length scales [49,
79]. It has been shown in the framework of renormalization group theory that logarithmic
corrections arise due the two-dimensional nature of the amphiphilic interfaces, so that
[79,[17]7]

3kgT . 1
kr(l) =k — =~ 4)
_ _ bkpT 1
Fr(l) =k + o lng 5)

wherel is the length scale on which the system is analysedasd microscopic cutoff
on the scale of the membrane thickness. Thus bending rigidity decreases, while Gaussian
bending rigidity increases with increasing length sc¢ale

For the following, it is useful to introduce two dimensionless quantities which cor-
respond to the two curvatures of a two-dimensional surface. For a structure with surface
areaA and volumé/, the length scal& /A can be used to rescale its curvatures. In order
to be able to convert easily from local to global quantities, we consider a triply periodic
CMC-surface with Euler characteristicand integrated mean curvatutg = [ dAH
per conventional (that is simple cubic) unit cell:

V% 2wy V2 v\ HV
“(3) -7 ()T ©
These expressions motivate the definition of thgology indexI” and thecurvature
index A: )
A*3 2 H*
I'= A= — 7
(27r|x> ’ A*? 0

whereA* = A/V?/3 andH} = H;/V'/3 are the scaled surface area and the scaled
integral mean curvature per conventional unit cell, respectively. Note that these defini-
tions can be applied to any triply periodic surface; here we used CMC-surfaces only
for an heuristic motivation of the quantities defined. Both the topology iddard the
curvature indexA do not depend on scaling and choice of unit cell. They are univer-
sal geometrical quantities which characterize a surface in three-dimensional space. The
topology index describes its porosity (the larger its value, the less holes the structure
has) and its specific area content (the larger its value, the more inner surface the struc-
ture contains), and the curvature index describes how strongly the structure is curved
(irrespective of the actual lattice constant). It is interesting to note that the two indices de-
fined here correspond to the two isoperimetric ratios known from integral geometry. For
a TPMS, the curvature index vanishes and the topology indéxis its most important
geometric characteristic.



Bicontinuous Surfaces in Self-assembling Amphiphilic Systems 117
2.2 Ginzburg-Landau Models

A different but equally powerful approach to amphiphilic interfaces is the isosurface
construction (also known as phase field method), which derives a two-dimensional sur-
face from a three-dimensional scalar figi¢t). For ternary amphiphilic system&(r)

can be interpreted as the local concentration difference between waten ] and oil

(¢ = —1). The position of the amphiphilic monolayer can be identified with the iso-
surfaced(r) = 0. For binary amphiphilic system&,r) can be interpreted as the local
concentration difference between water on different sides of a bilayer, and the isosur-
face®(r) = 0 marks the position of the bilayer mid-surface. In both cases, an energy
functional can be defined in the spirit of a Ginzburg-Landau theory for the scalar field
&(r). Areasonable choice is tlf#&-model introduced by Gompper and Schick![39, 40:

o) = [ dr {(20) + g@)(VO) + 1(@)} ®)
with the following choice forf andg:
f(@) = (@+1)*(@ - 1)*(@* + fo) , 9(P) = go + 928> . )

It has been shown that this model is similar to an interface description as given in
(1), and prescriptions have been given how to calculate the parameters of the interface
Hamiltonian from the given Ginzburg-Landau theary![41]. Due to the invariance under
& — —@, spontaneous curvatueg vanishes in this model. For given model parameters
(90, 92, fo), this energy functional can be minimized for its spatial degrees of freedom,
and a phase diagram can be calculated as a function of model parameters by identifying
the absolute minimum at every point. A reasonable choice for amphiphilic systems is
go < 0, fo close to0 andg, not too large. Then the formation of interfaces is favored
and a lamellar phase becomes stable. Calculation of the corresponding parameters of
the interface model then yields < 0, x > 0 andz < 0. Note thato < 0 favors the
formation of interfaces, and that< 0 favors the lamellar phase.

3 Triply Periodic Minimal Surfaces (TPMS)

Minimal surfaces and surfaces of constant mean curvature (se€lSect. 5) in general have
attracted a lot of attention both in mathematics and in physics, partially due to their
intrinsic beauty, which might be considered to follow from the fact that they are solutions

to variational problems [51]. Itisimportant to note that the different fields are interested in
different aspects of the same object: while for mathematicians the most central question
is the existence proof for a minimal surface of interest, physicists are more interested
in its representation, which can be used to derive physical properties of corresponding
material systems. As Karcher and Polthier remark, outside mathematics only pictured
minimal surfaces have been accepted as existent [56]. In fact this statement can also be
reversed: not every structure which one can picture is necessarily a minimal surface.
In this article we consider only established minimal surfaces. As we are motivated by
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physical considerations, we are interested only in embedded surfaces which do not self-
intersect. In regard to mathematics, our main emphasis here will be on representations,
since the physical properties of amphiphilic systems follow from their spatial structure.

Minimal surfaces are surfaces with = 0 everywhere. If one varies a surface with a
normal displacement (u, v) (wherew andv are the internal coordinates of the surface),
it can be shown that the change in surface are®ds= 26 [ dA¢(u,v)H (u,v)+O0(6%)

[54], that is a minimal surface is a stationary surface for variations of surface area.
Therefore surfaces under surface tension (like soap films), which try to minimize surface
area, form minimal surfaces. Here we consider surfaces which are dominated by bending
rigidity rather than by surface tension. However, for vanishing spontaneous curvature
the resulting structures also correspond to minimal surfaCkes. (1) explains why: these
surfaces have to minimizEdAH? (they are so-callewillmore surfacels and minimal
surfaces are a special case of Willmore surfaces, dihee 0 is a trivial minimization

of this functional.

If mean curvatured = (k; + k2)/2 = 0, then Gaussian curvatul€ = kiky =
—k? < 0. Thus minimal surfaces are everywhere either saddle-like or flat, and nowhere
convex. In fact it can be shown that the flat points with= k, = 0 are isolated.
Moreover it follows fromK < 0 that minimal surfaces without boundaries cannot be
compact([54]. Until 1983, only two embedded minimal surfaces were known which are
non-periodic: the plane and the catenoid. Then a new surface of this type was found, the
Costa-surfaces, which from the distance looks like the union of a plane and a catenoid
[56]. Today some more surfaces of this type are known, but the majority of all embedded
minimal surfaces without boundaries are in fact periodic. There is only one simply-
periodic minimal surface, the helicoid, and there are some doubly-periodic surfaces,
with the Scherk-surface being most prominent. The majority of all known periodic
minimal surfaces is triply-periodic. Here we will focus on cubic minimal surfaces and
their physical realizations, which are cubic bicontinuous structures.

The best known triply periodic minimal surface (TPMS) is the P-surface found by
Schwarz in 1867 and depicted in Fig. 3d. Schwarz and his students found 5 TPMS,
including the cubic cases P, C(P) and D. Until 1970 no more examples were found, then
Schoen described 13 mofe [96], including the cubic cases G, F-RD, I-WP, O,C-TO and
C(D). He proved the existence of G by providing an explicit (Weierstrass) representation,
and the existence of the others was proven in 1989 by Karcher [55]. More TPMS have
been discovered by Fischer and Kogch|[23, 57] and others, and today many more can
be generated by making controlled modifications to computer models of known TPMS,
a method which was pioneered by Polthier and Karcher [56]. However, these surfaces
tend to be rather complicated, and we will show below that only the simple (as quantified
by the topology index) TPMS are relevant for amphiphilic systems. In[Fig. 6 we show
visualizations of 10 different TPMS with cubic symmetry. There representations have
been obtained from th@%-Ginzburg-Landau theory as will be explained below. For
some of these structures, we also show line-like representations of the two labyrinths
defined by the surfaceskeletal graphs For example, in the case of the Schwarz P-
surface, the two skeletal graphs are the edges of the surrounding cube and the three lines
through the origin.
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Fig. 6. Visualizations of 10 different cubic minimal surfaces. Every triply periodic surface divides
space into two labyrinths, which in some cases are represented here by skeletal graphs. D and G
are the basis for the double-diamond structure and the gyroid, respectively, which often occur in
physical systems.
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Table 1. Euler characteristig, scaled surface are&” in the conventional unit cell and topology
indexI” = (A*3/2x|x|)'/? for those TPMS, for which exact results are known from Weierstrass
representations. Hela = K (1/2)/K(+/3/2) where K (k) is the complete elliptic integral of
the first kind, andi> = K (1/+/3)/K(/2/3). Note that often a unit cell is chosen for D which
is the eighth part of the one chosen here; then onechas—2 and A* = 1.918893.

x |A" r
G |8 [3(1+ k2)/2k: = 3.091444]0.766665
D —16{3/k1 = 3.837785 0.749844
I-WP|—12[24/3 = 3.464102 0.742515
P —4 |3k1 = 2.345103 0.716346
C(P)|—16|3/ks = 3.510478 0.655993

Different methods can be used to obtain representations of TPMS. Until recently,
the main method were the Weierstrass representation formulae. For the cubic TPMS,
they are known for P, D and G [25,126] as well as for I-WPI [62, 12]. For each of these
TPMS, a fundamental domain can be identified, so that the rest of the surface follows by
replicating it with the appropriate space group symmetties3n, Pn3m, Ia3d and
Im3m, respectively). The Weierstrass representation is a conformal mapping of certain
complicated regions within the complex plane onto the fundamental domain:

u+iv
(21,22, 23) = Re/ dz R(z) (1 — 2%,i(1 + 2?),22) (10)
0

where(u, v) are the internal (and conformal) coordinates of the minimal surface. The
Weierstrass mapping can be understood as the inversion of the following composition:
first the surface is mapped onto the unit sphere via its normal, and then the unit sphere is
mapped onto the complex plane by stereographic projection. The geometrical properties
of a surface follow from the Weierstrass representation as

—4

AA@) = RGP (Lt [2)? dude, H(z) =0, K(2) = o q s

11)

with z = u + iv. Obviously the (isolated) poles @t(z) correspond to the flat points

(K = 0) of the minimal surface. Only few choices & z) yield embedded minimal
surfaces. The ones for D and P have been known since the 19th century from the work
of Schwarz: for D it isR(z) = (28 — 14z* + 1)~ 2. P follows simply by the Bonnet
transformationR(z) — e R(z) with § = 90°. Equation[(Ill) implies that P and D
have the same metric and the same distribution of Gaussian curvature. However, since
they map differently into embedding space, they have different space groups and lattice
constants. The gyroid G was discovered in 1970 by SchHoen [96] as another Bonnet
transformation of D, withd = 38.015°. The Weierstrass representation for I-WP was
found only recently[[62._12]. If one of its poles is chosen to be at infinity, one has
R(z) = (2(2*+1))~%. In Tablé we give exact results for geometrical properties which
have been derived from Weierstrass representations (although for C(P) no Weierstrass
representation is known, these values can be derived from its complementary relationship
to P). Note that the topology indeX establishes the hierarchy G - D - P within this
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Bonnet family. This sequence corresponds to the connectivity of the labyrinths defined
by the TPMS: G has 3-fold, D 4-fold and P 6-fold coordination, since higher coordinated
structures have more holes.

Itis interesting to note that the identification of these structures in material systems
is a difficult enterprise, which depends on the availability of suitable representations.
Physical representations of TPMS have been built since the 19th century, using soap
films draped onto wire skeletons (without the wire skeletons surface tension would shrink
these structures into collapse). In 1967 Luzzati and Spegt noted that certain phases in
lipid systems are cubic bicontinuolis[67], but it was only in 1976 that Sciven suggested
the relevance of TPMS as structural models for cubic bicontinuous phasés [102]. The
Luzzati-Spegt structure was later identified with the gyroid structure G, and the diamond
structure D was identified both in lipid [65] and diblock copolymer systéms [114]. For
diblock copolymer systems, the gyroid structure G was identified in 1994 [45], and little
later it was noted that earlier identifications of cubic bicontinuous phases in diblock
copolymer systems often mistook the gyroid structure G for the diamond structure D [46]
(in fact, for diblock copolymer systems one should rather use the @ootde diamond
anddouble gyroidsince in this case two interfaces are arranged around the corresponding
TPMS). Today, the structures G, D, P and I-WP seem to be non-ambiguously identified in
amphiphilic system, with experimental evidence based mainly on small angle scattering
experiments, electron transmission microscopy, and swelling and diffusion experiments
[27,/68103].

Apart from the cases G, D, P and I-WP given above, no more Weierstrass repre-
sentations are known for cubic TPMS, so for all other cases numerical methods have
to be used. For example, tiBrface Evolvers a software package written by Brakke
which allows to minimize triangulated surfaces for different energy functionals (com-
pare Seci.18). Here we discuss the method of constructing the isosurfaces of a scalar
field @(r), as introduced in Sedi. 2.2. For our purpose, the usefulness of this model
lies in its rugged energy landscape, which means that many more local minima exist
than the absolute minima corresponding to the lamellar phase. In physical terms, these
additional minima correspond to modulated phases which are metastable. If started with
suitable initial conditions, the minimization procedure therefore yields representations
which can be used to characterize the structural properties of these phases. Therefore
this model has been used repeatedly in order to investigate bicontinuous cubic phases
[41,[42]43[9T]. In particularly, it has been found that the resulting representations are
very close to TPMS[42,23]. This finding can be explained as followis [97]: for a triply-
periodic cubic structure, the free energy per unit volufme: F/V follows from the
interface description of{1) as

f= é (0 A*) + % <2/{ / dA H? + 2rmx> (12)
wherea is the lattice constant of the conventional unit cell. Both terms in brackets
are scale invariant, that is they do not depend on the lattice const&mce for the
Ginzburg-Landau model at hand the first and second term in brackets is negative and
positive, respectively (compare Séctl2.2), a balance exists between the negative surface
tension term, which favor small values @f and the positive curvature contributions,
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which favors largeu. If we make the assumption that the minimization problem can be
decomposed in two independent minimizations, one for lattice constartt one for the
shape, we can first minimizgéfor a while consideringd* and | dA H? to be constant:

A <67rrsx+6nfdAH2)2’ P ( 4 ) ( (Jo|A%)? >
3)

o] A* 27 2RTY + 2k [ dAH?

Similar mechanisms are always at work in amphiphilic systems and explain why in
contrastto surface tension, bending rigidity does not necessitate the presence of a scaffold
(like a wire skeleton for soap films) to prevent collapse. In a second step, we now
minimize f,,., for shape. If we assum#* to be constant, we have reduced our problem

to the Willmore problem, and this is why minimal surfaces with= 0 appear in the
framework of thed®-theory. The final free-energy density can be written as

B 4 3 |U|3 3
f’min - = (27) <|I<J|> r (14)

where!l" isthe topology index defined il(7). We conclude that the stability of the different
TPMS is governed by their topology indices and that the most favorable bicontinuous
cubic phase is the gyroid G since it has the largest valud f¢compare Tablél1).
Although this conclusion is based on some assumptions, it is corroborated by a detailed
numerical analysis [97].

In order to obtain representations for a large list of TPMS, we used the Fourier
approach and the theories of black and white space groups to obtain TPMS as local
minima of the®®-theory [97]. Black and white space groups are also known as magnetic
or Shubnikov space groups and lead to a crystallographic classification of TPMS|[23, 24].
Implementation of black and white symmetries leads to a considerable reduction in the
degrees of freedoms of the Fourier series. Therefore this method is computationally cheap
and its results are easy to document and to reuse. A triply periodic surface partitions
space into two labyrinths, which can be considered to be colored black and white. In
the framework of the Ginzburg-Landau theory, black and white correspogd:=to0
and® < 0, respectively. The surface is callédlancedif there exists an Euclidean
transformationo which maps the white labyrinth onto the black one and vice versa,
otherwise it is calleshon-balancedExamples for non-balanced surfaces are I-WP and
F-RD, and the Fourier approach for the corresponding structure follows the usual rules
for the respective space grouip [106]. However, if the surface is balanced, the structure
is characterized bywo space groups: if the colored structure has space gtuihe
uncolored structure has space groug H®{1, a}. H contains all symmetry operations
of G that do not interchange the two labyrinths. It is a subgrou@ of index 2, that is
the quotient group is isomorphic to the cyclic group of ordle§/H = Z, = {1, a}.

For example, for the balanced cubic surface defineddeyt + cosy + cos z = 0, the
operation interchanging the two labyrinth is the translation by half a body diagonal, and
we haveH = Pm3m andG = Im3m.

Since’H has index in G, it follows from the theorem of Hermanhn [105] thHAthas
either the same point group or the same Bravais latticg #s# andgG have the same
point group, their Bravais lattices have to be different. Thus the Euclidean opexdiamn
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to be a translation which extends one cubic Bravais-lattice into another. For the cubic
system, there are only three different Bravais lattices (simple cubic P, body-centered
cubic | and face-centered cubic F), and only two possibilites to extend one into the other
by a translatiort,: for t, = a(X +y + z)/2 a P-lattice becomes a I-lattice, and for

to, = ax/2 a F-lattice becomes a P-lattice. The conditibfr + t,) = —&(r) leads

to reflection conditions for the reciprocal vectors. For Miller indi¢esk, 1), one finds
h+k+1=2n+1for P — I, andh,k,l = 2n + 1 for F — P. Note that these
reflection conditions are similar to the well-known orfes- £ + [ = 2n for | and
h+k,h+1 k41 =2nfor F. The P-surface has space gragm3m, but a black and
white symmetry with supergroupn3m, therefore it is an example for the caBe— 1.

Thus we haver + k + 1 = 2n + 1 and the first Fourier mode id, 0, 0). Note that

the double P structure, which one would expect for a diblock copolymer system, has no
black and white symmetry, but space graup3m, thus one hag + k£ + [ = 2n and

the first mode ig1, 1, 0).

If H andG have the same Bravais lattice, their point groups have to be different.
Thus the Euclidean operatianhas to be a point group operation which extends one
cubic point group into another one. There are five cubic point groups and six ways to
extend one of them into another by sofie. The condition®(P,r) = —&(r) leads to
more complicated rules than in the case of identical points groups [97]. However, there
are few relevant examples from this class, the most interesting one being the gyroid G,
whereP, is the inversion and the resulting rules are rather simple again (the even part
of the Fourier series vanishes).

Fischer and Koch have completely enumerated all 34 cubic group-subgroup pairs
G — H with index 2 which are compatible with cubic balanced TPMS [23]. Although
there is no way to completely enumerate all TPMS belonging to a givergpair
in general, this is possible for a certain subset, that is for all cubic balanced TPMS
which contain straight lines which form a three-dimensional netwiork [23]. This list
reads P, C(P), D, C(D), S and C(Y). In our work, we implemented Fourier series for
these structures as well as for the gyroid G (which is balanced, but does not contain any
straight lines) and the non-balanced structures I-WP and F-RD. In some cases like G,
D and P, the first mode of the Fourier ansatz implementing the correct black and white
symmetry is already sufficient to obtain a representation which is topologically correct
(nodal approximatioh In all other cases investigated, the addition of one more mode
(with the relative weight fixed by visual inspection) is sufficient. Nodal approximations
for bicontinuous structures have been discussed first by von Schnering and Nesper [115].
In Tabld2 and Tablg 3 we give nodal approximations and the corresponding space group
information for some of the balanced and non-balanced structures investigated.

Implementing the complete Fourier series and numerically minimizing&the
functional from [8) with nodal approximations as initial conditions, we arrived at
improved nodal approximationshich were tabulated in_[97] with up to six Fourier
modes. The isosurface construction is easily implemented using the marching cube
algorithm. The resulting triangulations can then be used to investigate geometrical
properties of these surfaces. In particular, widely used mathematics programs (like
Mathematica, Maple or Matlab) can be easily used to obtain useful representations
of TPMS from (improved) nodal approximations. Our numerical work shows that the
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Table 2. Group - subgroup pailG — H, the relatiori{ — G between them and nodal approxima-
tions for some balanced cubic minimal surfaggand? differ either in Bravais lattice or in point
group, but not in both. Nodal approximations only consider the space group information given by
G — H. For the simple cases, the first mode of the corresponding Fourier series is sufficient to
obtain the correct topology.

[H g [H—G [nodal approximations |
G |I14132 [Ia3d [432 — m3m/|sin(x) cos(y) + sin(y) cos(z) + sin(z) cos(x)

D |Fd3m |Pn3m|F — P cos(x — y) cos(z) + sin(z + y) sin(z)

P [Pm3m|Im3m|P — I cos(x) + cos(y) + cos(z)

C(P)|Pm3m|Im3m|P — I cos(z) + cos(y) + cos(z) + 3 cos(z) cos(y) cos(z)

Table 3. Nodal approximations for some non-balanced cubic minimal surfaces, for Ghichg.
In these cases, more than one mode is needed.

| G [nodal approximations ]
I-WP | Im3m |2[cos(x) cos(y) + cos(y) cos(z) + cos(z) cos(z)]

| =[cos(2x) + cos(2y) + cos(22)]

F-RD|F'm3m |4 cos(z) cos(y) cos(z)

—[cos(2x) cos(2y) + cos(2y) cos(2z) + cos(2z) cos(2x)]

0.1
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0.02
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Fig. 7. Distribution f (K') of Gaussian curvatutk over the cubic minimal surfaces investigated in

the framework of th&®-model. (a) For the structure G, D, P and I-WP, the data is obtained from
their exact Weierstrass representations; the agreement with the numerical results fibta the
model is good (not shown). (b) For the structures F-RD, S and C(P), no Weierstrass representation
is known, and the data is obtained from th&model.

six modes of the improved nodal approximations are sufficient to decrease the devia-
tion of the curvature properties from the real TPMS by one order of magnitude com-
pared to the nodal approximations. Also we measured for the first time the distribution
f(K) = [dA(u,v) §(K — K (u,v)) of Gaussian curvatur& over the surfaces. For

this purpose, we used up to 100 Fourier modes. The distribufi6Rs for different
structures are plotted in Fifl 7. In the cases for which Weierstrass representations are
known, the same data has been derived from the exact representations, and the resulting
agreement was very good. In general, we found that the surfaces C(D), C(P), F-RD, S
and C(Y), for which no Weierstrass representations are known, are much more compli-
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cated than the cases G, D, P and I-WP. This is evidenced by larger values of the topology
indexI”, multi-modal distributiong’ (K') of Gaussian curvatutk, and the larger widths

of these distributions. The latter property can be quantified by defining a dimensionless
variance (K — (K))?)

A= )2 (15)
where(...) means area average. In Table 4 we give the variahe# the different
distributions. Its value is the same for G, D and P due to the existence of a Bonnet-
transformation between them. This means that G, D and P have the narrowest distribution
of K (they are most uniformely curved), and all other structures have a considerably
wider one, with I-WP being the next best structure.

Table 4. VarianceA of the distributions of Gaussian curvatuféK’). The values forA are the
same for G, D and P due to the existence of a Bonnet-transformation between them.
G,D,P [I-WP S F-RD C(P)
A10.218702|0.482666|0.586079|0.649801{0.842022

4 Parallel Surfaces

We now consider the case of cubic bicontinuous phases in lipid-water mixtures. The
two examples for the experimental phase behavior of such systems given[ih Fig. 5 show
obvious similarities, and we will show now that a theoretical description can nicely ex-
plain these[[99, 100]. It has been shown by a thorough analysis of electron density maps
derived from X-ray data that the mid-surfaces of the cubic bicontinuous structures in
these systems are very close to minimal surfaces [68]. Indeed if one considers the lipid
bilayer as one entity, it has no spontaneous curvature by symmetry and one expects a
minimal surface shape for the midsurface. Each of the two monolayers of the bilayer has
unequal sides and therefore finite spontaneous curvature. For lipids monolayers, spon-
taneous curvature increases towards the water side as a linear function of temperature.
From the interface point of view, one expects each monolayer to form a CMC-surface.
However, then the distance to the minimal mid-surface would vary with position and
the amphiphilic tails would have to stretch in order to fill the internal space of the mem-
brane [3]_10]. It can be shown in the framework of a simple microscopic model that
the relative importance of stretching to bending contributions to the free energy of the
bilayer scales a&:/4)?, wherea is lattice constant andlis tail length [100]. Therefore
stretching is probibitively expensive and the two monolayers do not form CMC-surfaces
as expected from the curvature energyLof (1), but rather parallel surfaces to the minimal
mid-surface. The free energy of the cubic bicontinuous phases then follows by specify-
ing (1) with spontaneous curvature for two monolayers which are parallel surfaces to a
given TPMS. Since the parallel surface geometry does not allow to completely relax the
bending energy, the overall structure is cafiedtrated[3,[10,20].



126 Ulrich Schwarz and Gerhard Gompper

In principle, the analysis in the framework of the parallel surface model is rather
simple, since there exist exact formulae which express the geometrical properties of the
parallel surface as a function of the geometrical properties of the minimal surface:

5 2 5 —Ké 5 K
dA° =dA(1+ Ké°) ,H® = K52 KO = K52
whered is the distance between the two surfaces (that is amphiphilic chain length). Note
that these formulae are an extension of Steiner’s theorem from integral geometry to non-
convex bodies, whichis valid as long as the distarissmaller than the smallest radius of
curvature of the surface (otherwise the surface will self-intersect). Since mean curvature
H vanishes on the reference surface, the bending energy now becomes a function only
of its Gaussian curvatur&. However, as we have seen abo¥&,s distributed over
the TPMS in a non-trivial way, which makes the detailed analysis rather complicated.
Nevertheless, one central conclusion can be already made at this point{using[[16) in (1)
leads to an effective curvature energy for the lipid bilayer (to second ordé[&%]

(16)

By = / A [420%k + (25 + Scodk + 426%R) K + 4nd?K?) . (17)

Thus we see that although effective spontaneous curvature vanishes due to the bilayer
symmetry, the effective saddle-splay modulg, = 2% + 8codx + O(5?2), is corrected

to higher positive values due to the presence of the monolayer spontaneous cugvature
We conclude that as long ago = —&/4k, the bicontinuous cubic phases are favored
over the lamellar phase, since the preferred curvature of the monolayers translates into a
topological advantage of saddle-type bilayer structures. We also see that the correction
terminiky; is linear incy and therefore in temperatufé Therefore bicontinuous phases
become more favorable with increasing temperature in general (compare al$d Sect. 6 on
disordered bicontinuous structures).

For a detailed analysis of cubic bicontinuous phases made from bilayers, we first
note that the volume fraction of the lipid tails (the hydrocarbon volume fraction, which
for simplicity we identify with the lipid volume fraction, since the lipid heads are rather
small) can be calculated as

10 , 4 3
v = *3/ dé’/dA5 = 24" (5> + 2y <6> (18)
a’ J_s a 3 a
where again we have used the Gauss-Bonnet thedréem. (18) can be inverteduit@give

the lattice constant in units of the chain length, as a function of hydrocarbon volume
v. For smallv we find
2A*
2= (1 +

1) v

e v? 4 0(v4)> . (19)

and one can check numerically thato = 2A* /v is an excellent approximation for

v < 0.8. Forlarger values af, the surfaces begin to self-intersect and our model becomes
unphysical. Combinind{1) an@_(116) yields for the bending energy per unit volume of
the two monolayers (we use a factorixc3 to write this expression dimensionless and

a factord to write ¢y dimensionless)



Bicontinuous Surfaces in Self-assembling Amphiphilic Systems 127
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- 1- =(K* (7) 20
r=of [ 5 (-2 (7)) (20)
14+ ¢ v\ 2) 2 ro/v\?2
1= =0 (F) ) i (F) )
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where K* = Ka? is scaled Gaussian curvatui®,a has been replaced hy/2A4*,
Z(K*) has been defined d§* A* /8 (this can be considered to be a local analogue
of I'?), andr as—« /2% (0 < r < 1 due to the restrictions oR). The free-energy
density f now is a function of lipid volume fractiom, spontaneous curvaturg, the

ratio r of the two bending constants, and the distributfdt’) of Gaussian curvature

K. The (numerical) evaluation of this expression is only possible with the knowledge
of the f(K) for all TPMS of interest, which have been numerically obtainedin [97] as
described above.
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Fig. 8. For cubic bicontinuous phases in lipid-water mixtures, the lipid monolayers can be modeled
as parallel surfaces to a minimal mid-surface. (a) Free energy dengities function of lipid
volume fractionv for several cubic bicontinuous phases and the lamellar phase. (b) Theoretical
phase diagram as a function of water volume fraction and (dimensionless) spontaneous curvature.

In the limit of a planar mid-surface (lamellar phas¢).1(20) simplifieg te= v
- the larger the lipid volume fraction, the more frustrated bending energy per volume
accumulates. For a full analysis, one also has to include the effect of thermal fluctuations.
For the lamellar phase, they lead to a steric repulsion between the interfaces, which lead
to an additional term- v /(1 — v)? for the lamellar phase. For the cubic bicontinuous
phases, steric repulsion is irrelevant since the lateral restriction on the scale of a lattice
constantleads only to small perpendicular excursions. However, here the renormalization
of the saddle splay modulisbecomes relevant, and the formula giverLin (5) has to be
incorporated. The renormalization of bending rigiditand spontaneous curvatuggis
irrelevant here, since thermal fluctuations occur mainly on the level of the lipid bilayer,
for which mean curvaturéf vanishes. For the lamellar phase, Gaussian curvdture
vanishes as well, and the renormalization of all material parameters is irrelevant. Putting
everything together, we can numerically calculate phase diagrams from the free energy
densities of the different phases by using the Maxwell construction (construction of
convex hull). In Fig[B we show both the free energy densities as a function of lipid
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volume fractionv (for fixed spontaneous curvature) and the theoretical phase diagram
as a function of water volume fraction and spontaneous curvature. The main results are
in excellent agreement with the experimental phase diagram shown in Fig. 5: from the
many TPMS considered, only G, D and P are stable, their regions of stability have the
shape of shifted parabolae, and they occur in the seguen6 - D - P -emulsification
failure. These results can be understood as follows: G, D and P can achieve the least
frustration since they have the narrowest distribution of Gaussian curvature as measured
by the varianceA given in Tabld ¥. This prediction has been stated before by Helfrich
and Rennschuh [50], but at that time hardly any data was known to support it. The lipid
volume fraction at which they achieve this can be estimated by setting the dimensionless
mean curvature averaged over the parallel surface

[dA® H%S

_ _ (/)
(H")ad = [dAY  ~ 4—(v/T)? (1)

equal to the spontaneous curvatuseThereforery as a function of essentially scales

as~ (1 — pw)?/I'?, wherepyy = 1 — v is the water volume fraction. This explains

the characteristic shape of the bicontinuous stability regions in both the theoretical and
experimental phase diagrams. Note that at high temperature, that is large spontaneous
curvature, eventually the hexagonal phase will become stable, which cannot be treated
in the framework presented here. The optimal lipid volume fraciiéwilows from [21)

as .
2
v—< Aco ) r. (22)
1+ ¢y

Therefore the structures G, D and P become stable in the sequence of their geometry
index I, thatis & G - D - P. If the vater content corresponds to a average curvature of

P which is larger than the optimal (spontaneous) curvature, some of the water is simply
expelled fromthe structure, in order to keep the optimal curvature (emulsification failure).
Finally it should be noted that the Bonnet-transformation connecting G, D and P causes
the three structures to be stable along a triple line (see inset dflFig. 8). This means that
the stability of D and P is very delicate and can easily be destroyed by additional physical
effects. Therefore we conclude that in the framework of our interfacial approach, from
all TPMS considered the gyroid G is the only phase which has a robust stability in
lipid-water mixtures, since among the phases with favorable distribution of Gaussian
curvature, its geometrical properties are closest to the ones of the lamellar phase.

5 Surfaces of Constant Mean Curvaturve (CMC)

Surfaces of constant mean curvature (CMC-surfaces) Have const everywhere, so
minimal surfaces are a special case of CMC-surfaces. In contrast to minimal surfaces,
CMC-surfaces with finitéf can be compact, butthe only CMC-surface which is compact
and embedded is the sphere (for a long time, the sphere was believed to be the only
compact CMC-surface, but in 1986 Wente found the first CMC-torus). Non-compact
embedded CMC-surfaces are cylinder and unduloid, and all other known CMC-surfaces
are doubly or triply periodic.
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Fig. 9. Geometrical data for triply periodic surfaces of constant mean curvature: (a) scaled surface
areaA™ and (b) scaled mean curvatukg" as a function of volume fraction. The two branches
are symmetrical for G, D, P and C(P) since their minimal surface members are balanced.

CMC-surfaces are solutions to the variational problem of minimal surface area un-
der a volume constraint. This can be shown as follows: we first introduce a Lagrange
parameter for volume, that is pressprd he corresponding energy-igpV'. For normal
variationsi¢(u, v), we haveAF = 260 [ dA¢(u,v)H (u,v)—pd [ dAp(u,v)+0(6?).

Ifthe surface is required to be stationary in regard to variatiofisir obtain the Laplace
equationH = p/20 andH is constant over the whole surface. This explains why soap
bubbles and liquid droplets are spheres (respectively spherical caps when bound by a
surface). In amphiphilic systems, CMC-surface arise in the presence of spontaneous
curvature: like minimal surfaces minimize the Willmore functiorfal AH?, CMC-
surfaces with = ¢, minimize the functionall dA(H — ¢,)?. In any case, sinc# is
constant over the surface, surface area and volume now vary in the same way, and we
havedA/dV = 2H.

Table 5. Values forc = dv(H™)/dH ™| a+=0, wherev(H™) is the volume fraction of one of the

two labyrinths for the corresponding family of surfaces of constant mean curvature. The measured
values follow from our spline interpolation of the numerical datéa df [2]. In the second row we give
—A02/27r)(, a new estimate far derived in the text.

G D I-WP [P F-RD [C(P)
measured  |0.21910.14110.13850.21170.06650.0466
approximation0.19010.14650.15920.218§0.09060.1226

All simple TPMS which are of interest for physical reasons are members of a family
of CMC-surfaces/[55]. Each of these families consists of two branches, corresponding
to positive and negative mean curvatures, which are separated by the minimal surface
member. Like the minimal surface member, each of the the triply periodic CMC-surfaces
of the family partitions space into two intertwined, yet separate labyrinths, with volume
fractionsv andl —v. Each family of CMC-surfaces, and therefore the volume fractions of
the two labyrinths and the surface atéais parametrized by . If the TPMS-member
is balanced, then the operatieanmaps one branch of the family onto the other, in
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particularv(H) = 1 —v(—H),v(H = 0) = vo = 0.5 andA(H) = A(—H). For an
amphiphilic monolayer of thicknessin a ternary systemy can be identified with the
hydrocarbon volume fraction (that is oil and amphiphilic tails); v with the water
volume fraction (where we neglect the contributions of the amphiphilic heads,Ahd
with the amphiphile volume fraction. In the seminal work by Anderson, Davis, Nitsche
and Sciven from 1990, the CMC-families were numerically constructed for P, D, I-WP, F-
RD and C(P) using finite element methdds [2]. In 1997, Grosse-Brauckmann numerically
constructed the G-family in a similar way (using the software packagface Evolver
[44]. For these families, the following data has been tabulated: volume fractésna
function of scaled mean curvatufé* and scaled surface aret as a function of.
Rearrangement and interpolation with cubic splines provides smooth funéfibfhg
and A*(v). As v is varied away from the value, for the TPMS & 0.5 for balanced
structures), one has

H*(’U) - _ (U CUO) + O ((U _ ,U0>2) (23)
(v —1p)?

A*(v) = Ag — + 0 ((v- vo)?’)

where the numerical value otan be extracted from the cubic splines (compare Table 5).
Note that the two relationships are not independent due to the retatigdl = 2H.

They are related throughwhose values are well approximated by the analogous values
for the parallel surface companions to the TPMS, which can be derived as follows
[98]: if § denotes the perpendicular distance from the minimal to its parallel surface, to
lowest order iny the volume fractiony and the mean curvatuié*, averaged over the
surface in the unit cell, are given hy= vy + A*6 and H* = 2mxd/A*, respectively.
Thus H* = 2mx(v — vo)/A** ande = —A*? /2wy for the parallel surface case. The
corresponding numbers are given in Table 5; except for C(P), the overall agreement with
the numerical data far for the CMC-surfaces is remarkably good.

Equation[(28) is a useful approximation for CMC-surfaces close to the TPMS, where
they behave similarto parallel surfaces. However, as mean curvature grows, the numerical
data starts to deviate from these approximations, changesiml A* become slower,
and a turning point is reached, whereeaches an extremal value and starts to decrease
again as a function off. Beyond the turning point, the surfaces correspond to nearly
spherical regions connected by small necks which resemble pieces of unduloids. Finally
these necks disappear and each branch terminates in an assembly of sphere, which might
be close-packed or self-intersecting. Figure fig:cmc shows the geometrical data for the
families G, D, P, C(P), I-WP, F-RD as tabulated in the literatur&[2, 44]. We do not show
the parts of the data beyond the turning point, as these correspond to surfaces whose
structure is unphysical.

We now consider a ternary mixture of water, oil and amphiphile, where amphiphiles
self-assemble into monolayers with spontaneous curvaturén such a system, all
relevant phases (micellar, hexagonal, lamellar, cubic bicontinuous) can be modeled as
CMC-surfaces (spheres, cylinders, planes, triply periodic CMC-surfaces). This approach
has first been used by Safran and coworkers [94, 95, 116], who in particular discussed the
surfaces from the D-family. In our work [98], we extended this analysis to all families of
interest, including the G-family, for which the relevant data has become available only
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recently and which features very prominently in experimental systems. A ternary mixture
has two independent degrees of freedom for concentration, which we choose to be the
hydrocarbon volume fraction and the raticw of amphiphile to hydrocarbon volume
fraction. For the formulae given later it is in fact useful to modify the definitiow aind

to scale it with the dimensionless spontaneous curvature = p 4 /vced. The analysis

of (@) for CMC-surfaces is simplified considerably by the fact that as mean cunture

is constant, there is no difference between local and global curvature properties and the
integral over the surface becomes trivial. We use a fabte to rewrite the free-energy
density in the dimensionless form

2
f A (H_1> _ 2mxr (24)

C()V Co 003V '

For phases with lamellar, cylindrical and spherical aggregates, this free-energy density
can easily be expressed as a function of the concentration degrees of freedom:

fr(w,v) = wo, (25)
fo(w,v) = wv (% - 1)2, (26)
fs(w,v,7r) = wv {(1;} - 1)2 - 7“7;12} . 27)

Note that onlyfs depends om, since the other two structures have no Gaussian curva-
ture. Since the aggregates are disconnected, the dependends wivial. The phase
boundariess — C, S — L, C — L and the emulsification failure are obtained frdml(25),
(26) and [(2F) to bev = 24/(7 — 167), w = 6/(1 — r), w = 8 andw = 3/(r — 1),
respectively. For example, fer= 0 and increasingv, we find the phase sequence L -

C - S -emulsification failure, which is typical for amphiphilic systems (for simplicity,
we identify phase transitions with crossing points of the free-energy-density curves, and
use the Maxwell construction only for the emulsification failure). In Eig. 4 one sees
that experimentally the emulsification failure indeed occurs at constésitraight line
through water apex). For increasingthe spherical phase becomes more favorable and
finally supresses the cylindrical phase.

The structures based on CMC-surfaces discussed here are very different from the
lipid bilayer structures discussed in the preceding section: now only one monolayer
is present, and one of the two labyrinths is filled with hydrocarbon. In the following,
they are calleaingle structureslt should be noted that for non-balanced structures, it
makes a difference which of the two labyrinth is filled with hydrocarbon; for example,
the I-WP-family generates two single structures, which we call | and WP. In ternary
amphiphilic systems there also exists an analogue to the bilayer structures discussed
before, which we caltouble structure@nd mark with an index. Double structures
have the same geometries like cubic bicontinuous phases in diblock copolymer systems.
They can be considered to be TPMS-based bilayer structures where the inner part of the
bilayer has been swollen with suitable solvent. Since each of the two monolayers has the
same spontaneous curvatuge a double structure can be modeled as the combination
of the two surfaces of a CMC-family witH = ¢q andH = —c¢y. Since for not too large
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H these two CMC-surfaces essentially correspond to the shrinkage of one of the two
separate labyrinths defined by the minimal surface member, the two interfaces of a double
structure do not intersect. Note that in principle there exists another class of structures,
that is double structures where oil and water (and therefore amphiphile orientation and
mean curvature) have been reversed. However, since finite spontaneous curvature selects
only phases with curvature towards one specific side, they are suppressed for energetic
reasons by the lamellar phase.

In our work [98], we considered 8 different single structures, which exist for
the volume intervalg0.056, 0.944] for G, [0.131,0.869] for D, [0.249,0.751] for P,
[0.481,0.519] for C(P),[0.357,0.857] for I, [0.143,0.643] for WP, [0.439, 0.625] for F
and[0.375,0.561] for RD. We also considered 6 double structures, which exist for the
volume intervalg0.112, 1.0] for Gy, [0.262, 1.0] for D, [0.498, 1.0] for Py, [0.962, 1.0]
for C(P), [0.624, 1.0] for I-WP and[0.818, 1.0] for F-RD;. Note that the gyroid struc-
tures cover the largest intervalsirfor their respective class: there is no other structure
which can incorporate so extreme volume fractions like the gyroid. Together with the
3 non-cubic phases treated above, we considered 17 different phases. Since the cu-
bic phases consist of one connected aggregate, the scaling of the free energy density
f with hydrocarbon volume fraction will be non-trivial. For a given value of, the
mean curvaturéd (v, a) = H*(v)/a and the surface are&(v,a) = A*(v)a? within a
unit cell are determined by the curves plotted in Eig. 9. The amphiphile concentration
pa = A(v,a)/a® = A*(v)/a fixesa, so thata = A*(v)/pa = A*(v)/(wvcy). From
(24) we can then derive

(wo)®

I'(v)?

where we have used the definition for the curvature indend the topology index’

from (). Note that now the indices avedependent. For the single structuré$ollows

by combining using the data shown in Hig. 9 with the definition§ln (7). For the double
structures, the procedure is somehow more complicated. However, for balanced double
structures, it becomes simple again, one then can use

I (28)

fec(w,v,r) = wv [A(v) wo — 1] +r

Ar(v) = A(v/2)/2, 1 (v) = 2T (v/2), fae.a(w,v,7) = 2fc(w, % r) (29)

in (28).

Forr = 0 (vanishing saddle splay modul&3, the analysis of cubic bicontinuous
phase behavior becomes rather simple: in contrast to the case of the parallel surface
model discussed in the last section, now the bending energy given]in (28) can be com-
pletely relaxed, namely by satisfying(v) = 1/vA(v). This leads to lines of vanishing
frustration in the Gibbs triangle. For the free-energy density of the micellar and hexag-
onal phases[({27) anf(26), respectively), the lines of vanishing frustration follow as
w = 3 andw = 4, respectively. All lines of vanishing frustration are plotted in Eig. 10a.
Obviously for this case phase behavior is very complex and degenerated, since every
structure considered has some region of stability around its line of vanishing frustration.
This type of degeneracy caused by the bending energy has been discussed before [6] and
leads to the conclusion that additional physical effects have to be operative, as it is not
observed in experimental systems.
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Fig. 10. (a) Lines of vanishing frustration far = 0. With increasing amphiphile concentration,
the structures S - C- double cubic - single cubic are stable. (b) Phase behavioe=fdr/15.
Now all cubic phases have been supressed except the two gyroid phases. In (a)ang (b},
which corresponds té/,O/C14/C12Es atT = 20°C.

Using [23), a simple approximation can be derived for the lines of vanishing frus-
tration of the cubic phases:

w = —cAg/vo(v — o), wr = —4cAp/(v —1). (30)

Thus the minimal surface case corresponds to the stable solutioms$eod atv = v,

andv = 1, respectively. For the balanced single structures and the double structures
the hierarchy of the different phases within the band-like region occupied by a certain
structural type is thus determined by the valuesA§. Using the approximation ~

—A*? /27y derived above, we findA* ~ I'2, where A* and I" correspond to the
minimal surface members. Therefore the phase sequence is approximately determined
by the topology index of the minimal-surface member of each family. In particular, for

a given structural type we expect to find the seqeddc D - P as dunction of eitherw

or w.

Forr > 0 (negative saddle splay moduli} spheres become more favorable, cubic
phases less favorable and cylinders and lamellae experience no change in free energy.
Therefore the cubic phases will finally disappear, but our numerical analysis shows that
cubic phases can persist upsto= 0.2, in contrast to earlier work, which predicted
r = 0.1 [116]. The reason for this becomes clear in Fig. 10b where we show the full
phase diagram for = 1/15 = 0.07: the only cubic phases stable here are the two gyroid
structures, which have not been considered before. There are two main reasons for their
outstanding performancd:_(28) shows that their large values for the topology index
reduces the energetic penalty causedrbwynd since they can accomodate extreme
volume fractions, they can compete with other structures at all relevant concentrations.
By comparing the theoretical phase diagram from[Ei§. 10 with the experimental one from
Fig.[ , we conclude that the experimental system should correspond to a rather large
value ofr. Earlier work moreover suggests that incorporation of thermal fluctuations
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would favor micellar phases near the water-amphiphilic side and lamellar phases near the
water apexX[101]. Such a modification is expected to considerably improve the agreement
between the two phase diagrams.

6 Random Surfaces

6.1 Microemulsion and Sponge Phases

Whenx/kgpT, the bending rigidity in thermal units, becomes sufficiently low (that is
temperaturd’ sufficiently high), bicontinuous structures can now longer maintain their
long-range crystalline order and melt into a disordered phase, which is characterized by
an exponential decay of correlations in the interfacial positions. Such phases have been
observed experimentally for along time in many binary and ternary amphiphilic systems.
Microemulsionsare macroscopically homogeneous and optically isotropic mixtures of
oil, water and amphiphiles. On a mesoscopic scale, they consist of two multiply con-
nected and intertwined networks of oil- and water-channels, which are separated by an
amphiphilic monolayers. Free-fracture microscopy, where the sample is quickly frozen,
cut, and then studied with an electron microscope, reveals the intriguing structure of this
phasel[52], see Fif. 1. A similar phase, $penge phaseappears in binary systems of
water and amphiphile, where now the two labyrinths are occupied by water, which are
separated by an amphiphilic bilayer. The pictures obtained by free-fracture microscopy
[107] are even more suggestive in this case, because the sample has a preference to break
along the bilayer mid-surface, so that the three-dimensional structure of the membrane
becomes visible. An example is shown in FEigl 12, which clearly shows the saddle-like
geometry of the amphiphile film. Therefore, the intuitive picture of microemulsion and
sponge phases as fluid versions of bicontinuous cubic phases is strongly supported by
these experiments.

These phases have been investigated experimentally in considerable detail over many
years. In particular, their phase behavior and scattering intensities have been studied care-
fully. A theoretical understanding of the statistical mechanics of membranes, however,
is only beginning to emerge in recent years [75[ 40, 78, 18, 35]. This is no surprise, since
the statistical mechanics of a surface, which can not only change its shape, but also its
topology in all possible ways, is extremely complicated. In principle, a partition function

of the form .

Z= > DR(7) exp{H[R(7)]/kpT} (31)
topologies

has to be calculated, whef®R () denotes an integration over all possible shapes with
parametrizatioR(7) of the surface at fixed topology, whereis a two-dimensional
coordinate system on the surface. However, this integral cannot be just over all possible
parametrizatioR () of a surface of fixed topology, but has to be restricted to those
parametrizations, which lead to physically different shapes in the embedding space; this
is indicated by the prime. Finally, the contributions off all different topologies have to be
summed over. It is clear that this problem is sufficiently complex that no exact solution
will be found anytime soon. Therefore, approximations have to be made in order to get
some insight into the behavior of these phases.
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Fig. 12. Freeze-fracture microscopy picture of a sponge phase. From [107].
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6.2 Gaussian Random Fields

A very useful approach is to describe the interfaces as isosurfagsusisian random
fields(GRF). This corresponds to a Ginzburg-Landau model as discussed i Sect. 2.2,
in which the free-energy functional is taken to be quadratic in the scaladfield This
Gibbs distribution is homogeneous and isotropic, and all the functional integrals are
Gaussian and can be performed exactly. In fact, there is a considerable mathematical
literature onthe isosurfaces of GRF, see e.g. the book by Adler[1]. Inorder to comply with
the conventions of this field, we now make two changes to our notation. In the following,
area content is denoted By(rather than by4d) and amphiphilic (hydrocarbon) volume
fraction by¥ (rather than by).

The amphiphilic monolayers in microemulsions have been modelled as level surfaces
of GRF by Berkl[4] 5], Teubnei[112], Pieruschka and Marcélja [81], and Pieruschka
and Safran[[82, 83]. Here the starting point is a Gaussian free-energy functional of the

general form
Holol = 5 [ davia) @d(-a). (32)

The average geometry of thigq) = « level surfaces can be calculated for arbitrary
spectral density(q). For the surface densit§,/V, the mean curvatur®, the Gaussian
curvatureK, and the mean curvature squatgd, the following averages are obtained

[L12]:
S 2 «a
5 —Wexp[ 2],/ , (33)
(K) = ()1~ a?), (34)
(H) = 5a\/2 @), (35)
2\ _ 1 (q4)
<H>—<K>+g<qT (36)
where 8
n\ __ q 5
(q >—/W(1 v(q) . (37)

The valuea of the level cut can be used to describe the preferred curvature of the
membrane, as well as the volume fractions of oil and water. S{iteis a linear
function of o, compare[(35), this parameter is proportional to the spontaneous curvature
co. In particular, fora. = 0 the mean curvature of the surface vanishes; this applies to a
balanced system, whetg = 0.

For balanced systems, it follows from {33,34) that the topology ifdex /8/m =
0.9003 (compare[(l7)). This value is only slightly larger than the ones for cubic bicon-
tinuous phases (compare Table 1), since the balanced random sponge features only few
disconnected parts (note thAtdoubles when the structure is duplicated). For small
curvatures (that is smatt), one can use (33.84.35) to derive a relationship between
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topology indexI” and curvature index which is independent of spectral densitig)

anda: .
r‘/g(1+26/14+...>. (38)
™ m

When the curvature indet increases since the sponge’s interfaces gain curvature, the
topology index increases, too, since disconnected parts proliferate.

The GFF-approach is most predictive when the Gaussian model of random interfaces
is related to the statistical mechanics of membranes by a variational approximation
[82,[83]. In this case, the spectral densitfq) in the functional [(3R) is determined
by the requirement that the(r) = 0 level surfaces mimic the behavior of interfaces
controlled by the curvature Hamiltoniall (1) as close as possible. The usual variational
approach employs the Feynman-Bogoljubov inequality,

F < Fo+ (H —Ho)o (39)

whereH{ and F' are the Hamiltonian and the free energy of the system of interest,
respectively, ané{, andF, the same quantities of the reference system. In this way, an
upper bound for the true free energy is obtained. This is more complicated in the case of
random surfaces, because the GRF-Hamiltonian is defined everywhere in space, while
the curvature Hamiltonian is only defined on the level surface. Therefore, the curvature
energy does not restrict fluctuations of the fiélat) away from the level surface. In order
to suppress such fluctuations, one usually makestren-spherical approximatiothat
is the constraint®(r)?) = 1 is introduced.

With this variational approach, Pieruschka and Safrah [82] have been able to derive
the following form for the spectral density

a

e “o

v(q)
and to relate the parametersb andc to the curvature elastic modutiandx and the
surface density/ V. The first interesting result is that the spectral density is found to be
independentf 5. Exact expressions for the parameters can be found in [22]. To leading
order inkgT/k, the parameters simplify to

1572 kpT S

= 41
@ 16 & V' (41)

b=Sr (5)2 , (42)
-G

The spectral density (#0) is equivalent to the scattering intensity in bulk contrast. Its
Fourier transform yields the correlation function

@26 = [ Eqesna) = 5 explr/e] sinlk) (@)
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where the second equality holds féf < 2,/c. Thus, the correlation function is char-
acterized by two length scales, the correlation lengtnd the typical domain size

d = 27 /k of the oil- of water channels, which are obtained frdm] (40) (44) to be
[113]

2

N

&' = Jy/avero, (45)
1

k= 2
2

With the results[{41)[(42) an@ (43), the asymptotic behavior for skgll/x of the
dimensionless produéf is found to be

N

—b. (46)

64 &k
5\/3 kgT '

The free energy of the sponge phase can also be calculated from the GRF approach. To
leading order in an expansion ks T'/ k, the free-energy density = F/V is found to

be [83]
2 3
f= %[25 — 57] (5) — I%T In (55) : (48)

This implies that for small membrane volume fractiaghs= 6S/V (where again is
the thickness of the amphiphilic interface), the entropic term dominates over the energy
term, and that the sponge phase becomes unstable in this regime.

We want to end this section with a short discussion of the reliability of the predictions
of the GRF model as a variational approximation for membrane ensembles. The weak
point of this approach is that it is not clear whether the calculated entropy is actually
equivalent to the physical conformational entropy of the membranés [74]. The main
problem is that the curvature energy only controls the shape ofthe = 0 level
surface, while the values of the scalar fidlét all other points in space are not affected
by it. The fluctuations ofp in these oil- and water-regions are mainly determined by
the mean-spherical constraif®?(r)) = 1. Obviously, an appreciable contribution to
the total entropy arises from the fluctuationsfothese ‘bulk’ regions. This would not
affect the predictions of the model as long as the ‘bulk’ contributions were independent
of the interface positions. Unfortunately, there is no argument so far that this is indeed
the case.

k& 47

6.3 Phase Behavior of Random Surfaces

From here on we consider only the case of vanishing spontaneous curvgtdré, that

is balanced microemulsions and sponge phases. Then the phase behavior is controlled
by the bending rigidity:, the saddle-splay modul&s the density of membrane area per
volume,S/V, and a microscopic cutoff, which can be identified with the thickness of

the amphiphilic interface. It is very important to realize that for vanishing spontaneous
curvature, phase transition as a function of the amphiphile volume fraction cannot be
understood on the basis of the curvature energy alone —i.e. without considering the effect
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of thermal fluctuations [85]. The reason is that the curvature Hamiltonian is conformally
invariant in three spatial dimensions, which implies in particular that it is invariant
under a simultaneous rescaling of all length scales. Since the curvature energy is scale
invariant, the energgiensityscales as the third power of an inverse length, i.65a% )3,
Therefore, the curvature energy of any given structure — spherical, cylindrical, lamellar,
cubic, or random — scales in exactly the same way with decreasing amphiphile volume
fraction, and their relative order is maintained. Therefore, thermal fluctuations are crucial
for these phase transitions.

It has been suggested by several autHors[[93,19, 73, 28] that the free energy of the
sponge phase can be obtained by integrating out the membrane fluctuations on scales
less than the typical domain size. This integration over small-scale fluctuations leads to
renormalized, scale-dependent curvature modgli) ands z (1) as given by{¥) and {5),
respectively, with /§ = ¥ —1, where? is the membrane volume fraction. This implies
that the curvature Hamiltoniahl (2) has to be replaced by

P [aaffn@ )0+ kP + @0 - k) @9

with

T
K}+}R(g’_1) = K4+ + L?)B In¥ 5 (50)
s

5kpT
127

ke p(TH) =Ko+ Inv . (51)

The stability arguments used in S&CL]2.1 imply thatz andx_ r have to be positive

for the free energy (49) to be stable against collapse of the structure to molecular scales.
Therefore, there are instabilities @t zr(? ') = 0 andk_ r(¥ ') = 0. The latter
instability can be identified with the emulsification failure of the sponge phase, so that
the phase boundary is predicted to occur at [73]

6w K

In¥ = 5 T (52)
This result can be understood intuitively as follows. For sufficiently large membrane
volume fraction, botl r andx__ r are positive. Therefore, the system tries to minimize
(k1 + k2)? and(k; — ko)2. This can be achieved by decreasing botrandk,, i.e. by
swelling a given structure as much as possible —the lamellar or sponge phase is stable at
this value of?. Onthe other hand, as soomnasy, or x_ r become negative at some small
value of?, the free energy can be reduced by collapsing the structure. With decreasing
length, howevers r andx_ g increase and finally become positive. Therefore, the
collapse stops at a length scale which is exactly the length scale determired by (52).

It is worth mentioning that a similar result follows from the calculation of the shapes
and free energies of passages in lamellar phasés [31]. Passages are catenoid-like connec-
tions between adjacent lamellae which proliferate close to phase transitions to disordered
bicontinuous phases. From a detailed calculation, which takes into account the Gaussian
membrane fluctuations, the densjtypf passages per unit base area of the stack can be
obtained to be
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Ao(k/ksT) (d\*?
p= % <5) expldri /kpT] (53)
Here, Ao(k/kgT) is a function which has to be calculated numerically; it is predicted
to increase monotonically with decreasirgkzT in [31]. Therefore, the density of
passages increases with increasing lamellar spatiig= ¥~!. When the average
distance between passages shrinks to the average membrane separation, a transition to
the sponge phase can be expected to occur. This happens at

10 R

— InV¥/¥* =4gx—— 4

g In / T T (54)
where?* is a function ofx/kpT. Equations[(52) and (b4) agree perfectly.

The consideration of the renormalization rofand  implies that the free-energy

density, f, of the sponge phase should behave a5[[89, 87, 90]

f=(A+Blnw)w. (55)

As explained above, the overall scaling witf derives from the conformal invariance

of the curvature energyl represents the bending energy without thermal fluctuations,
and is a linear function of both and. B represents the logarithmic corrections from

the renormalization and is a linear function of temperature. Bogind B depend on the
detailed geometrical structure of the sponge phase, and thus cannot be obtained from
simple scaling arguments. It is important to note that the functional dependence of the
free energyl(85), which is based on the renormalization of the curvature elastic moduli
due tosmall-scalemembrane fluctuations, does not agree with the free energy (48) of
the Gaussian random field model, which includes the topological entropy of a disordered
bicontinuous phase.

6.4 Monte Carlo Simulations of Triangulated Surfaces

In order to go beyond the approximations discussed in Jecis. 62 dnd 6.3, discretized
surface models can be investigated by Monte Carlo simulations 35, 34,36, 37]. Surface
triangulations provide the best way of discretizing a surface as uniformly as possible. The
model consists of vertices, which are connected by bonds in such a way that the bonds
form a triangular network. Several Hamiltonians have been suggested for triangulated
surfaces, such that their shapes and fluctuations are governed in the continuum limit
by the curvature energy frorhl(1) [85]. Two examples are Gaussian-spring models, in
which neighboring vertices — the vertices connected by bonds — interact with harmonic
spring potentials, and tether-and-bead models, in which the interdétionbetween
neighboring vertices is defined the potential

00 0<r<og
V(r)=4¢0 for og <r <4y (56)
00 bo <r

whereo is the hard-core diameter of the beads, &né the tether length. For tether
lengthsty < /300, the network is self-avoiding, because a bead of some distant part of
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the membrane does not fit through the hole between the three beads of a triangle, even
for maximally stretched tethers.

A Monte Carlo simulation of sponge phases requires three types of Monte Carlo
moves [36]. The first step is to displace selected beads by a random vector chosen
uniformly in the cubg—s, s]3. Here,s is determined by the criterion that roughi9%
of trial moves is accepted according to the Boltzmann weight. The second step is to
vary the connectivity of the bond network, in order to allow for diffusion and fluidity of
the membrane. This dynamic triangulation is performed for any two adjacent triangles.
The bond which forms the common edge of the two triangles is cut, and a new bond is
inserted, which connects the two previously unconnected beads. The bond can only be cut
if every bead retains bonds to at least three other beads. This procedure guarantees that
the network remains two-dimensionally connected, no holes open up in the network,
and the topology of the network does not change. Finally, the third step is to change
the topology of the surface. This is done by removing two nearby triangles from the
surface, and by connecting the corresponding vertices by a prism of six new triangles.
Of course, the inverse step is also possible, with a passage six triangles being removed,
and two new triangles inserted to close the surfaces. The acceptance of both the bond-
flip and topology-change moves is determined by the Boltzmann weight and is therefore
controlled by the curvature energy. We want to mention parenthetically that some care
has to be taken to find a good discretization of the bending energy [33].

A typical configuration of a triangulated surface in a cubic box with parameters
and¥ chosen in the stability region of the microemulsion or sponge phase is shown in
Fig.[13. This configuration nicely demonstrates the bicontinuous structure of balanced
microemulsions and sponge phases. The saddle-like geometry of the membrane can also
be easily seen. Finally, the figure shows tleatally the structure of the sponge phase
strongly resembles the cubic phases discussed above. Therefore, a sponge phase shoulc
indeed be considered as the molten state of the crystalline cubic phase.

A more quantitative comparison with the theoretical approaches of $edts. 6.2 and
[6.3 above can be made by determining the phase diagram of the randomly-triangulated
surface model, and by calculating the osmotic presguiethe simulations as a function
of the membrane volume fractiah From [55%), we obtain

0% [T = kBLT[wa /0w — f]

= [(2A+ B) + 2Bl v v? 67

i.e. the same functional dependence as the free-energy density itself. This dependence
of the osmotic pressure is indeed nicely confirmed by the simulation |data [36]. The
simulations therefore provide strong evidence for the renormalization of the elastic
moduli of the curvature model and for the dependehcé (55) of the free energy on the
membrane volume fraction.

The phase diagram for fixed bending rigidityis shown as a function of and¥
in Fig.[14. The simulation data are compared with the predicfioh (52) for the phase
boundary. Since the slopes of the phase boundaries in this logarithmic plot agree very
well, not only the exponential dependence of the membrane volume fraction at the
transition on the saddle splay modulus is confirmed, but also the value of the universal
prefactor in[(BR) is strongly supported.
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Fig. 13. Atypical membrane configuration in a sponge phase for bending rigidity, 7" ~ 1.6.
The two sides of the membrane are shaded differently in order to emphasize the bicontinuous
structure of this phase. Froimn[36].
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6.5 Comparison with Experiments

Experimentally, phase diagrams and scattering intensities have been studied system-
atically for many different surfactant molecules. Qualitatively, the agreement with the
theoretical approaches is very reasonable. For example, the scattering curve in bulk con-
trast shows a peak at non-zero wave vector in the microemulsion phase, which moves
out and decreaeses in height with increasing surfactant concentration. A quantitative
comparison, however, is much more difficult. We want to discuss here three different
classes of experiments, where a such a quantitative comparison has been made.

The first type of experiments are scattering studies in bulk and film contrast. In bulk
contrast, the scattering intensity,., (q) is proportional to the spectral densityq) of
the Gaussian random field model, compéreé (40), for wave vegtehich are not much
larger than the characteristic wave vecdtasf the domain structure, compafe{46). The
functional dependence df_(40) describes the scattering data in this regime very well,
as was first noted by Teubner and Stiey [113], who derived this result on the basis of a
Ginzburg-Landau model, very similar to that introduced in $ect. 2.2. We want to mention
parenthetically, that for wave vectoks< ¢ < 1/4, the intensity is dominated by the
scattering from sharp, planar interfaces; in this limit, the famous Podod lew [84, 112]
predictsl(q) ~ (S/V)q~*.

In the limit of wave vectory — 0, the scattering intensity in film contrast is given
by [87]

I(g—0)~ ¥ <g§> - (58)

wherep is the osmotic pressure ¢f (57). For the free enelgy (55), this implies
[WI(g— 0)]"* ~ const +InW¥ (59)

Such a behavior has indeed be observed experimentally in [87]. However, this result
has been questioned by Daicic et al./[14], 13]. This has lead to a intensive debate, with
arguments against [115, 16] and in favior|[91] 86] of the existence of a logarithmic renor-
malization of elastic moduli in the sponge phase.

In a second type of experiment, information about the average geometry of the
surfactant film can be extracted from the scattering intensity in the regitne < 1/4.
This information is contained in the corrections to the asymptioti¢ law for smaller
values of the wave vectdr [111]. Experimentally, the average Gaussian curvature is found
to be [11]

(V/S)*(K) = 1.2540.10 (60)

which is in excellent agreement with the Gaussian random field régyilf)?(K) =
1/I'? = —72/8 = 1.23 and simulations of thé°-Ginzburg-Landau model[32, B0].

The third type of experiment concerns the phase behavior of mixtures of water
and non-ionic surfactant as a function of temperature and surfactant concentration. As
mentioned in Seckl4, the saddle-splay moduius a linear function of temperature
in this case. Therefore, the concentrations at the phase boundaries of the lamellar and
the sponge phase are expected fromd (52) to depend exponentially on temperature. A
logarithmic plot of the phase diagram 6f» E5 in water [109], compare Fid.l4, is
indeed consistent with this expectation.
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The most detailed information about both the scattering intensities and phase be-
havior in these systems has been obtained very recently in ternary amphiphilic systems
of water, oil and non-ionic surfactadt; F£;, to which small traces of an amphiphilic
block copolymer has been addéed|[53,/21]22] 29, 38]. The results obtained in this system
provide further, strong evidence for the existence of a logarithmic renormalization of
andr in microemulsions and sponge phases.

7 Summary and Outlook

In this contribution we discussed the geometrical properties of surfaces which can be
used as structural models for cubic bicontinuous phases in amphiphilic systems: triply
periodic minimal surfaces, their parallel surfaces and constant mean curvature compan-
ions, and bicontinuous random surfaces. For each class of surfaces, we showed how the
geometrical properties translate into physical properties of bicontinuous phases in am-
phiphilic systems in the framework of an interfacial description. The surprising success
of this approach relates to the fact that in amphiphilic systems, the solvent has little phys-
ical properties by itself and the free energy is essentially determined by the interfaces.
Although there are several physical effects which have been neglected in our treatment
of amphiphilic systems, including van der Waals and electostatic interactions, it can be
concluded that the most essential aspects of phase behavior are now well understood in
terms of the properties of the underlying geometries.

During the last years, the interest in bicontinuous phases has increased due to some
promising applications in the nano- and biosciences. For example, amphiphilic self-
assembly has been used to synthesiesoporous systerfis3], that is porous material
with amorphous walls (usually silica-based) and pore sizes on the nanometer scale. As
a matter of fact, the combination of amphiphilic self-assembly and crystallization also
seems to be a basic aspect of biomineralization [70], and there are many algae whose min-
eral skeletons look similar to cubic bicontinuous phases [51]. There is also a large effort
underway to synthesize bicontinuous structures from graphitic mat8cainarzitels
which offers the advantage of atomically smooth walls| [69]. Porous material on the
nanometer scale is not only interesting for its structural properties (for example use as
sieves or catalysts), but also for its electronic properties (for example use as photonic
bandgap material).

In the biosciences, two recent developments involved cubic bicontinuous phases. It
was found that the gyroid phase in the monoolein-water system provides a functional
environment for the crystallization of integral membrane proteins like bacteriorhodopsin
[77,66]. Membrane proteins are notoriously difficult to crystallize in a three-dimensional
array, which however is necessary for structure determination by X-ray scattering. And an
extensive analysis of transmission electron micrographs of many biological specimen has
shown that cubic bicontinuous structures are locally formed in several regions of the cells
[61,119], including endoplasmatic reticulum, Golgi apparatus and mitochondria. These
are extended lipid bilayer systems in the cell which carry a protein machinery responsible
for processing and packaging material inside the cell. In fact it is easy to imagine that
biological cells regulate their lipid composition and therefore their spontaneous curvature
as to achieve geometries favorable for the task at hand. In general, cubic bicontinuous
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phases seem to be ideal space partitioners if a large amount of active surface area is
needed while simultaneously providing good access for incoming and outgoing material
through the space away from the interface.

What problems are left regarding the subjects of this article ? From the viewpoint of
mathematics, there are two interesting aspects. On the one hand, the physical motivation
leads to certain variational problems for which little is known about the corresponding
solutions. One example is the energy functiohdld (H —c,)? with a volume constraint;
in principle this problem was subject of Sdct. 5, but in lack of adequate mathematical
knowledge (this problem has been treated for vesicles [104], but not for bicontinuous
structures), we used CMC-surfaces as structural models. On the other hand, some classes
of surfaces are well investigated, but still representations are missing which could be
used in physical modelling. Therefore additional progress in regard to Weierstrass repre-
sentations for TPMS, Weierstrass-like representations for their CMC-companions, and
other (numerical) representations would be most welcome. With a larger repertoire of
representations, it should also become easier to treat non-local effects like van der Waals
and electrostatic interactions; here integral geometry might be helpful in reducing the
dimensions of the corresponding integrals, and sophisticated summation techniques are
needed to account for the infinite extension of the bulk phases.

From the viewpoint of material sciences, it seems worth to study the role of bound-
aries and inclusions. The tefpoundariedncludes grain boundaries between different,
yet adjacent phases, for example between a hexagonal and a gyroid phase; until now, this
problem has been investigated only for simple geometries. It also includes the boundary
to an external surface (which might even be curved or chemically structured) and free
boundaries. For example, it has been recently observed experimentally that the bicontin-
uous cubic phase in the binary system wat€{s Fg is the only known material system
which shows crystal faces with high Miller indicedeyvil's staircasg[80]. The termin-
clusionsincludes several object of biological and technological relevance, in particular
integral membrane proteins, polymers anchored in the membrane and (functionalized)
nanoparticles. In all of these cases, the framework described here should provide a good
starting point for future research, which has to bridge the gap between the mathematical
knowledge on the geometrical properties and the physics knowledge of the material basis
of these fascinating structures.

8 WWW Resources

Here we list some internet addresses which relate to the subject of this contribution:

— http://lwww-sfb288.math.tu-berlin.de/"konrad/
Homepage of Konrad Polthier, one of the pioneers for numerlcal representations and
visualizations of minimal surfaces.

— http://people.math.uni-bonn.de/kgb/
Homepage of Karsten Grosse-Brauckmann, a mathematician working on CMC-
surfaces, in particular on the G-family.

— http://lwww.susqu.edu/facstaff/b/brakke/evolver/
The Surface Evolvels a public domain software package wntten by Ken Brakke
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for the propagation of triangulated surfaces. In particular, Ken Brakke shows many
examples of TPMS obtained with tisarface Evolver

— http://lwww.msri.org/publications/sgp/SGP/indexc.html
The Scientific Graphics Project offers stunning visualizations of m|n|mal and CMC-
surfaces, obtained mostly in the framework of Weierstrass representations.

— http://www.gang.umass.edu/
The Center for Geometry, Analysis, Numerics and Graphics (GANG), where a lot of
work on CMC-surfaces takes place.

— http://www.mpikg-golm.mpg.de/th/people/schwarz/
More information on the work described here, including color plctures of all structures
investigated and (improved) nodal approximations.
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