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I. COOPERATIVE CURVATURE MODEL

We derive a kinetic model for clathrin-mediated endocytosis that is based on minimal assumptions based on our
experimental observations. We first assume that the area A of clathrin coats grows mainly by addition of new triskelia
at the edges [1]. With a local growth rate kon and an edge length E , we have the simple growth law

d

dt
A = Ȧ = konE . (1)

We also know from our experimental observations that all clathrin-coated pits have the geometry of a spherical cap
with area Acap = 2πR2(1 − cos θ), where R is the cap radius and θ the closing angle. The edge length then is
Ecap = 2πR sin θ. Using these formulas on Eq. (1) we find

2Ṙ tan
θ

2
+Rθ̇ = kon . (2)

Because we parametrize the shape of the growing clathrin coat by the two dynamical variables R(t) and θ(t), but
have only one growth equation up to now, we have to make additional assumptions to completely define our kinetic
model.

As the main function of clathrin is to generate curvature, we now focus on coat curvature H = 1/R and assume
that it increases with a basal rate γ. Experimentally we observe that clathrin patches first grow flat and then start
to curve. Curvature generation in clathrin lattices is the combination of a preferred curvature of the single triskelion
and cooperative effects in the lattice [2, 3]. Several mechanisms exist that might generate curvature during coat
growth. First, clathrin triskelia are likely to be geometrically frustrated within the flat clathrin coat. To overcome
this frustration, they would have to adjust their positions relative to their neighbors, such that their free energy is
getting more favorable. Second, lattice vacancies could be filled up with new triskelia, as predicted theoretically [4].
Note that these vacancies would not necessarily relate to patch area, because the clathrin lattice consists of many
overlapping arms. Filling of vacancies would however increase clathrin density and coat stiffness, and thus could also
drive invagination of the coat [5]. We note that it was indeed confirmed experimentally that the clathrin density
increases within the coat during invagination [2, 6]. Third, lattice pentagons, associated with lattice curvature, could
form at the edge of the clathrin lattice and diffuse into the coat, similar to lattice defects on curved surfaces [7]. All
three mechanisms could generate curvature with a certain rate which we assume to be constant during the initial
stages of growth.

At late stages, increase of curvature has to stop and therefore we assume curvature saturation at a characteristic
value H0, which is similar to, but different from the radius measured for clathrin cages. A simple estimate would be
40 nm for a typical radius of the membranes in the pits [8] plus 15 nm thickness of the clathrin coat [9]. These 55 nm
would be larger than the 40 nm for clathrin cages, which are expected to be frustrated. If all triskelia in the lattice had
achieved their optimal positions, a preferred or spontaneous curvature H0 should emerge. Thus a growth equation for
H should have a stable fixed point generated by a higher order term. Since the corresponding mechanism is known
to be of cooperative nature, larger groups of triskelia should be involved and the mechanism should start to dominate
relatively late in the process, but then dominate quickly. Here we assume that the mechanism is proportional to H2

(rather than to H, with a linear law corresponding to a non-cooperative effect that starts to show early). Assuming
that curvature generation is a geometrical effect, its time development should depend on the closing angle and we get

dH

dθ
= γ

(
1− H2

H2
0

)
. (3)

The stable fixed point at H = H0 can then be interpreted as corresponding to the preferred curvature of the mature
coat.

Eq. (3) can be solved with the initial condition H(θ = 0) = 0 by

H(θ) = H0 tanh

(
γ

H0
θ

)
, (4)
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TABLE 4. Coat curvature, coat area, and edge length summarized for the CCM, the CAM, and the CoopCM.

CCM CAM CoopCM

H 1/RCCM

√
2π(1−cos θ)
ACAM

1/Rcoat

A 2πR2
CCM(1− cos θ) ACAM 2πR2

coat(1− cos θ)

E 2πRCCM sin θ
√

2πACAM
(1−cos θ)

sin θ 2πRcoat sin θ

and defines the coat radius as a function of the closing angle

Rcoat = R(θ) =
1

H(θ)
= R0

1

tanh (γR0θ)
, (5)

with R0 = 1/H0. We note that the expansion of Eq. (5) gives R ∝ 1/θ in leading order around the flat state.
We can combine Eq. (2) and Eq. (3) to find the full dynamics of coat invagination. Therefore, we compute the

derivative of Rcoat

dRcoat

dθ
= − γR2

0

sinh2(γR0θ)
. (6)

We use Eq. (5) and Eq. (6) and the chain rule dR/dt = dR/dθ dθ/dt to rewrite Eq. (2). Solving for θ̇ yields

θ̇ = kon
1

2dR(θ)
dθ tan θ

2 +R(θ)
. (7)

After expanding Eq. (7) up to leading order in θ we find

θ̇ =
12γkon

8γ2R2
0 − 1

1

θ
, (8)

which is solved with the initial condition θ(t = 0) = 0 by

θ(t) =

√
24γkon

8γ2R2
0 − 1

t . (9)

Thus the coat initially is flat (θ = 0) and then starts to generate curvature, increasing the closing angle with a square
root dependence in time, which reflects the slowing down of curvature generation as preferred curvature is approached.
We refer to this model as the cooperative curvature model (CoopCM) due to the assumption of a non-linear growth
law.

II. FIT RESULTS

To contrast the CoopCM with existing models, we fit it to experimental data for H(θ), A(θ) and E(θ). We compare
the fitted curves to the constant curvature model (CCM), defined through the constant coat curvature 1/RCCM, and
to the constant area model (CAM), defined through the constant coat area ACAM. The equations for the curvature
H(θ) = 1/R(θ), the area A(θ), and the edge length E(θ) are summarized in Table 4 for all three models. In order to
fit, we first filter the data according to curvature H, as described in the methods section of the main text. We then fit
the different models to each of the data sets separately. For the CCM and CAM we get values for one parameter each,
namely RCCM and ACAM, respectively. For the CoopCM we obtain two parameter values γ and H0. For the CoopCM
we also determine the area when invagination occurs A0 = A(θ = 0.01)/A(θ = π), which is the relative transition
size where the flat-to-curved-transition occurs. By definition, invagination in the CCM starts simultaneously with
coat assembly (A0 = 0), while invagination in the CAM starts at the maximum area (A0 = 1). Moreover, for the
CoopCM we also compute R0. For all parameters we also determine the relative fit errors, given by σx/x, where σx is
the standard deviation of the parameter x and x is the value of the parameter. This procedure allows us to compare
the fit results to each other. The fitted parameter values for the different models and cell lines are summarized in
Table 1–3.

We then fit Eq. (9) to the data, describing θ(t). Using the values of γ and H0, we determine kon from the fit. The
resulting values, measured in units of the pseudo time s̃, are summarized in Table 1–3. We do not show the fit errors
of kon, because they are small and result from the same fit of θ(t) and the errors of γ and H0, which does not allow
us to discriminate between the different fits.
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TABLE 5. BIC for the curvature fits H(θ) of the CCM, CAM and CoopCM for the analyzed cell lines.

CCM CAM CoopCM

SK-MEL-2 cells -19079 -21218 -21670

c3T3 cells -8119 -9179 -9498

U2OS cells -2784 -3097 -3190

III. BAYESIAN INFORMATION CRITERION

Apparently, the CoopCM agrees better with the data compared to the CCM and the CAM. However, while the
CCM and the CAM both only include one parameter, the CoopCM has two parameters. In order to base model
selection on a statistical criterion and to account for the additional parameter of the CoopCM, we compute the
Bayesian information criterion (BIC). The BIC takes into account both how well a model fits the data but also how
many free parameters it includes to avoid overfitting. The BIC can be expressed by [10]

BIC = N ln

(
RSS

N − k

)
+ k ln N ≈ N ln

(
RSS

N

)
+ k ln N , (10)

where we used that N � k in the last step. Here RSS is the residual sum of squares RSS = ΣNi (f(xi) − yi)2 with
xi and yi the measured data and f(xi) the fitted data, N is the number of data points and k is the number of free
parameters. In general, when comparing different models, the model with the lowest BIC is preferred. In Table 5 the
BIC is calculated from Eq. (10) for the curvature fits H(θ) for the different cell lines. For all cell lines, the BIC for
the CoopCM is lowest. Therefore, we conclude that the additional parameter of the CoopCM is justified and that the
CoopCM agrees best with the data.

IV. LINEAR CURVATURE MODEL

As an alternative to the CoopCM model we now consider a linear curvature model. As in the CoopCM model, we
assume that the coat curvature H = 1/R increases at a basal rate γ. In contrast to the CoopCM model however, we
now assume that the increase in curvature at late stages is slowed down proportional to H and must stop at a value
H0

dH

dθ
= γ

(
1− H

H0

)
. (11)

Eq. (11) can be solved by

H(θ) = H0

(
1− e−

γ
H0

θ
)
. (12)

Eq. (12) also defines the coat radius R = 1/H as a function of the invagination angle θ

R(θ) = R0
1

(1− e−γR0θ)
, (13)

with R0 = 1/H0. The derivative of R(θ) reads

dR

dθ
= − γR2

0

4
(

sinh γR0θ
2

)2 . (14)

Now we use Eq. (13) and Eq. (14) on Eq. (7). After expanding up to second order in θ we find

θ̇ =
2kon
R0

(
1− 1

6

(
2γR0 −

1

γR0

)
θ

)
, (15)
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Supplementary Figure 6. Invagination angle θ as a function of the pseudotime t. Red line: the fit to the same data as in
Fig. 4B according to Eq. (16) for the linear curvature model.

which is solved by

θ(t) =
1

R0

(
3γ

2γ2 − 1
R2

0

)1− e
−

 2γ2− 1
R2

0
3γ

kont
 . (16)

For small t, Eq. (16) can be expanded to θ(t) ∼ (kon/R0)t. The linear increase of θ with t does not fit the data for
small t (cf. Supplementary Figure 6).
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